中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
31.4用列举法求简单事件的概率
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,两个转盘分别自由转动一次(当指针恰好指在分界线上时重转),当停止转动时,两个转盘的指针都指向3的概率为( )
A. B. C. D.
2.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )
A.点数都是偶数 B.点数的和为奇数 C.点数的和小于13 D.点数的和小于2
3.张华想给他的王老师发短信拜年,可一时记不清王老师手机号码后三位数的顺序,只记得是1、6、9三个数字,则张华一次发短信成功的概率是( )
A. B. C. D.
4.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. B. C. D.
5.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )
A. B. C. D.
6.从1、2、3、4四个数中随机选取两个不同的数,分别记为、,则关于的一元二次方程有实数解的概率为( )
A. B. C. D.
7.如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为( )
A. B. C. D.
8.袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )
A. B. C. D.
二、填空题
9.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是___________.
10.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.
11.在平面直角坐标系中,作△OAB,其中三个顶点分别为O(0,0),B(1,1)A(x,y)(-2≤x≤2,-2≤y≤2,x,y均为整数),则所作△OAB为直角三角形的概率是 .
12.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为、.那么方程有解的概率是______.
三、解答题
13.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.
抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
14.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
15.(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:
应聘者 专业知识 讲课 答辩
甲 70 85 80
乙 90 85 75
丙 80 90 85
按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?
(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.
①小厉参加实验D考试的概率是 ;
②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
16.央行今年推出数字货币,支付方式即将变革,调查结果显示,目前支付方式有:A微信、B支付宝、C现金、D其他.调查组对某超市一天内购买者的支付方式进行调有统计:得到如图两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了 名购买者;
(2)请补全条形统计图.在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“现金”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.
参考答案
1.A
解析:
解:列表如下:
1 2 3 4
1
2
3
4
共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果,
两个转盘的指针都指向3的概率为,
故选:A.
2.C
解析:
试题分析:画树状图为:
共有36种等可能的结果数,其中点数都是偶数的结果数为9,点数的和为奇数的结果数为18,点数和小于13的结果数为36,点数和小于2的结果数为0,所以点数都是偶数的概率==,点数的和为奇数的概率=,点数和小于13的概率=1,点数和小于2的概率=0,所以发生可能性最大的是点数的和小于13.故选C.
3.A
解析:
解:根据题意知:后三位可能为169、196、619、691、961、916这6种情况,
而符合条件的只有1种情况,
所以张华一次发短信成功的概率是.
故选:.
4.C
解析:
解:画树状图如下:
一共有6种情况,“一红一黄”的情况有2种,
∴P(一红一黄)==.故选C.
5.C
解析:
解:列表得:
直 左 右
?右 (直,右)? ?(左,右) (右,右)?
?左 ?(直,左) ?(左,左) ?(右,左)
?直 ?(直,直) ?(左,直) ?(右,直)
∴一共有9种情况,两辆汽车经过这个十字路口全部继续直行的有一种,
∴两辆汽车经过这个十字路口全部继续直行的概率是;
故选C.
6.C
解析:
由题意,△=42-4ac≥0,
∴ac≤4,
画树状图如下:
a、c的积共有12种等可能的结果,其中积不大于4的有6种结果数,
所以a、c的积不大于4(也就是一元二次方程有实数根)的概率为,
故选C.
7.C
解析:
根据题意画出树状图如下:
共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,
∴,故选C.
8.B
解析:
画树状图为:
共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=.
故选B.
9.
解析:
解:列表得:
(1,5) (2,5) (3,5) ?(4,5) -
?(1,4) ?(2,4) ?(3,4) - ?(5,4)
?(1,3) ?(2,3) - ?(4,3) ?(5,3)
?(1,2) - ?(3,2) ?(4,2) ?(5,2)
- ?(2,1) ?(3,1) ?(4,1) ?(5,1)
∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,
∴这两个球上的数字之和为偶数的概率是.
10.
解析:
画出树状图,
由树状图可知共有2×2×2=8种可能,摸出的三个球中有2个黄球和一个红球的情况有2种,所以概率是.
故答案为.
11..
解析:
如图,满足均为整数的点A(x,y)共有25个,
由勾股定理和逆定理,可知有8点能使△OAB为直角三角形(图中黑点).
∴所作△OAB为直角三角形的概率是.
12.
解析:
画树状图为:
共有36种等可能的结果数,其中使a2+4b≥0,有36种,
∴方程x2+ax-b=0有解的概率是,
故答案为:1.
13.(1)不可能;随机;;(2)
解析:(1)因为从女班干部中进行抽取,所以男生“小刚被抽中”是不可能事件,
“小悦被抽中”是随机事件,
第一次抽取有4种可能,“小悦被抽中”有1种可能,所以“小悦被抽中”的概率为,
故答案为不可能, 随机, ;
(2)画树状图如下:
由树状图可知共12种可能,其中“小惠被抽中”有6种可能,
所以“小惠被抽中”的概率是: .
14.(1)详见解析;(2).
解析:
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.
试题解析:解(1)画树状图得:
则共有16种等可能的结果;
(2)∵既是中心对称又是轴对称图形的只有B、C,
∴既是轴对称图形又是中心对称图形的有4种情况,
∴既是轴对称图形又是中心对称图形的概率为:.
15.(1)见解析;(2)①;②小王、小张抽到同一个实验的概率为.
解析:
解:分
分
分
因为乙的平均成绩最高,
所以应该录取乙;
(2)①小厉参加实验D考试的概率是,
故答案为;
②解:列表如下:
A B C D
A AA BA CA DA
B AB BB CB DB
C AC BC CC DC
D AD BD CD DD
所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,
所以小王、小张抽到同一个实验的概率为=.
16.(1)200;(2)108°;(3)
解析:
解:(1)本次一共调查的购买者有:56÷28%=200(名);
故答案为:200;
(2)D方式支付的有:200×20%=40(人),
A方式支付的有:200﹣56﹣44﹣40=60(人),
补全的条形统计图如图所示:
在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°;
故答案为:108;
(3)根据题意画图如下:
共有9种等可能的情况数,其中两人恰好选择同一种付款方式的有3种,
则两人恰好选择同一种付款方式的概率是=.
试卷第1 11页,总3 33页
_21?????????è?????(www.21cnjy.com)_