人教版 九年级数学 25.2 用列举法求概率 课时训练(Word版 含答案)

文档属性

名称 人教版 九年级数学 25.2 用列举法求概率 课时训练(Word版 含答案)
格式 zip
文件大小 731.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-12-24 19:14:49

图片预览

文档简介

人教版
九年级数学
25.2
用列举法求概率
课时训练
一、选择题(本大题共10道小题)
1.
从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为(  )
A.
B.
C.
D.
2.
2019·临沂
经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是(  )
A.
B.
C.
D.
3.
如图25-2-1,有以下三个条件:①AC=AB;②AB∥CD;③∠1=∠2.从这三个条件中选两个作为题设,另一个作为结论,则组成的命题是真命题的概率是(  )
A.0
B.
C.
D.1
4.
一个盒子中装有标号分别为1,2,3,4,5的五个小球,这些球除标号不同外其余都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为(  )
A.
B.
C.
D.
5.
如图,有一块质地均匀的圆铁片,两面上分别写有数字1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有数字1,2,3和数字1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是(  )
A.
B.
C.
D.
6.
小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为(  )
A.
B.
C.
D.
7.
如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为(  )
A.
B.
C.
D.
8.
三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a,b,c,则以a,b,c为边长的三角形是等边三角形的概率是(  )
A.
B.
C.
D.
9.
如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是(  )
 
A.
B.
C.
D.
10.
把十位上的数字比个位、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是(  )
A.
B.
C.
D.
二、填空题(本大题共8道小题)
11.
如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别转动这两个转盘,将转盘停止后指针所指区域内的两数相乘.
请将所有可能出现的结果填入下表:
(2)积为9的概率为________,积为偶数的概率为________;
(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为________.
12.
(2019·甘肃陇南)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:
请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).
13.
一张圆桌旁有四个座位,A先坐在如图所示的位置上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻坐的概率为________.
14.
从2019年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还要从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科,则选修地理和生物的概率为________.
15.
如图,转盘中6个扇形的面积相等,任意转动转盘1次,转盘停止转动后,指针指向的数小于5的概率为________.
16.
如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.
17.
某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.
18.
已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.
三、解答题(本大题共4道小题)
19.
某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:
(1)随机选择一天,恰好天气预报是晴;
(2)随机选择连续的两天,恰好天气预报都是晴.
20.
如图①,一枚质地均匀的正四面体骰子,它有四个面,且每个面上分别标有数字1,2,3,4.
如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈B……
设游戏者从圈A起跳.
(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性是否一样.
    
21.
如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.
(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?
(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.
22.
母亲节当天,小明去花店买花送给母亲,挑中了康乃馨和兰花两种花.已知康乃馨每枝5元,兰花每枝3元,小明只有30元,希望购买花的枝数不少于7枝,其中至少有一枝是康乃馨.
(1)小明一共有多少种可能的购买方案?列出所有方案;
(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案买花,求他能实现购买愿望的概率.
人教版
九年级数学
25.2
用列举法求概率
课时训练-答案
一、选择题(本大题共10道小题)
1.
【答案】A
2.
【答案】B 
3.
【答案】D [解析]
构成如下命题:如果①AC=AB,②AB∥CD,那么③∠1=∠2;如果②AB∥CD,③∠1=∠2,那么①AC=AB;如果①AC=AB,③∠1=∠2,那么②AB∥CD.这三个命题都是真命题.
故选D.
4.
【答案】C [解析]
随机摸出两个球,所有可能的结果有20种,每种结果的可能性相同,其中摸出的小球标号之和大于5的结果有12种,所以所求概率P==.故选C.
5.
【答案】C [解析]
画树状图如下:
因为共有24种等可能结果,面向桌面的三个数字的积为奇数的结果有4种,所以所求概率为.
6.
【答案】A
7.
【答案】C [解析]
设正方形ABCD的边长为2a,针尖落在阴影区域内的概率==.
故选C.
8.
【答案】A [解析]
画树状图如下:
由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a,b,c为边长的三边形是等边三角形的概率是=.故选A.
9.
【答案】B [解析]
因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:
所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是.故选B.
10.
【答案】C [解析]
列表如下:
由表格可知,所有等可能的结果有30种,其中组成“中高数”的结果有12种,因此组成“中高数”的概率为=.
二、填空题(本大题共8道小题)
11.
【答案】[解析]
(2)一共有12种等可能的结果,其中积为9的结果只有1种,所以积为9的概率为;
12种的结果中积为偶数的结果有8种,所以积为偶数的概率为=.
(3)1~12这12个数中,不是表格中所填数字的有5,7,10,11,所以所求的概率为=.
解:(1)填表如下:
(2) 
(3)
12.
【答案】0.5
【解析】因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为:0.5.
13.
【答案】 [解析]
可设第一个位置和第三个位置都与A相邻.
画树状图如下:
∵共有6种等可能结果,A与B不相邻坐的结果有2种,
∴A与B不相邻坐的概率为.
14.
【答案】 [解析]
画树状图如下:
由图可知,选修结果共有6种,每种结果出现的可能性相等,其中选修地理和生物的结果只有1种,因此所求概率为.
15.
【答案】 [解析]
转盘转动一次,出现6种等可能的结果,小于5的结果共有4种,故指针指向的数小于5的概率为=.
16.
【答案】 [解析]
余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为.
17.
【答案】 [解析]
解法1:列表如下:
共有20种等可能的结果,其中恰好选中一男一女的结果有12种,
所以恰好选中一男一女的概率P==.
解法2:画树状图如下:
共有20种等可能的结果,其中恰好选中一男一女的结果有12种,
所以恰好选中一男一女的概率P==.
18.
【答案】 [解析]
列表如下:
∴一共有20种等可能的结果,使电路形成通路的结果有12种,
∴使电路形成通路的概率是=.
三、解答题(本大题共4道小题)
19.
【答案】
解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为.
(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,
∴随机选择连续的两天,恰好天气预报都是晴的概率为=.
20.
【答案】
解:(1)∵掷一次骰子有4种等可能的结果,只有掷得4时,才会落回到圈A,
∴P1=.
(2)列表如下:
所有等可能的结果共有16种,当两次掷得的数字和为4的倍数,即掷得的结果为(1,3),(2,2),(3,1),(4,4)时,才可落回到圈A,共有4种结果,
∴P2==.而P1=,∴淇淇与嘉嘉落回到圈A的可能性一样.
21.
【答案】
(1)因为Rt△ABC的两直角边长之比为2∶3,
所以设b=2k,a=3k,
由勾股定理,得c==k,
所以针尖落在四个直角三角形区域的概率为=.
(2)因为正方形EFMN的边长为8,所以c=8,所以a2+b2=c2=64.
因为Rt△ABC的周长为18,
即a+b+c=18,
所以a+b=10,
所以Rt△ABC的面积=ab
=[(a+b)2-(a2+b2)]
=9.
22.
【答案】
(1)设小明购买x枝康乃馨,y枝兰花,其中x≥1,x,y均为整数,则
①+②×3,得5x+3y+21≤30+3x+3y,
所以x≤,所以1≤x≤.
当x=1时,5×1+3y≤30,
所以y≤,所以y可取8,7,6,
所以可购买1枝康乃馨,8枝兰花或1枝康乃馨,7枝兰花或1枝康乃馨,6枝兰花.
当x=2时,5×2+3y≤30,
所以y≤,所以y可取6,5,
所以可购买2枝康乃馨,6枝兰花或2枝康乃馨,5枝兰花.
当x=3时,5×3+3y≤30,
所以y≤5,所以y可取5,4,
所以可购买3枝康乃馨,5枝兰花或3枝康乃馨,4枝兰花.
当x=4时,5×4+3y≤30,
所以y≤,所以y可取3,
所以可购买4枝康乃馨,3枝兰花.
综上所述,共有8种购买方案.
方案如下表:(单位:枝)
(2)若小明先购买一张2元的祝福卡,则5x+3y≤28,则他能实现购买愿望的方案为方案二、方案三、方案四、方案五、方案七,共5种,
所以从(1)中任选一种方案买花,他能实现购买愿望的概率为.