北师大版七年级 上册 第二章 有理数复习 课件(共28张ppt)

文档属性

名称 北师大版七年级 上册 第二章 有理数复习 课件(共28张ppt)
格式 pptx
文件大小 371.4KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-12-28 17:19:28

图片预览

文档简介

第二章 有理数及其运算
小结与复习
要点梳理
一、有理数
1.用正、负数表示具有相反意义的量
有理数
正整数
负整数
负分数
正有理数
负有理数
正分数

有理数
正整数
正分数
整数
分数

负整数
自然数
2.有理数的分类
负分数
(1)按定义分类
(2)按符号分类
针对训练
2.将下列各数分别填入下列相应的圈内:
3.5
|-2|
0
-3.5
-2
-1
3
5
-
1
3
0.5
, , , , , , ,
正数
负数
整数
分数
3.5
|-2|,
0.5
-3.5
,-2
,-1
3
5
,-
1
3
0
,|-2|
,-2
3.5,
,0.5
-3.5,
-1
3
5
,-
1
3
[解析] 根据正数、负数、整数和分数的定义,严格区别.注意零既不是正数,也不是负数,但是整数.
二、数轴
规定了原点、正方向、单位长度的直线叫做数轴.
任何一个有理数都可以用数轴上的一个点来表示.
1.数轴的概念
3.比较有理数的大小
(1)数轴上两个点表示的数,右边的总比左边的大.
(2)正数大于0,0大于负数,正数大于负数.
2.用数轴上的点表示有理数
4.比较下列各数的大小
(1)
(2)-87,?78
(3)23,35
(4)?23,35
?
1100,-0.009
?
三、绝对值
1.相反数的概念及性质
(1)只有符号不同的两个数叫做互为相反数 a+(-a)=0
(2)互为相反数的两个数到原点的距离相等 |a|=|-a|
2.绝对值的概念及性质
(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值
(2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数.
0的绝对值是0.
(1)如果a>0,那么|a|=a
(2)如果a<0,那么|a|=-a
(3)如果a=0,那么|a|=0  
│a-2│+│b-3│+│c-4│=0,求a+2b+3c
3.比较两个负数的大小
两个负数,绝对值大的反而小.
三、有理数的运算
1.有理数的加法
(1)加法法则
(2)加法的运算律
加法的交换律
加法的结合律
45+(-30) (-13)+(-34)
22.54+(-4.4)+(-12.54)+4.4
2.有理数的减法
减法法则:
减去一个数,等于加上这个数的相反数.
(-5)-3
(-1.5)-(-11.5)
15-[1-(-20-4)]
3.有理数的乘法
(1)乘法法则
(2)乘法的运算律
乘法的交换律
乘法的结合律
4.有理数的除法
乘法的分配律
除法法则:
除以一个数,等于乘以这个数的倒数.
5.有理数的乘方

指数
底数
乘方运算规律:
(1)正数的任何次幂都是_______.
(2)负数的偶次幂是_______,负数的奇次幂是____.
(3)0的任何正整数次幂都是___.
(4)a的偶次幂是_________,即an≥0(其中n为偶数).
正数
正数
负数
0
非负数
有理数混合运算的顺序:
6.有理数的混合运算
先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.
四、科学记数法
在a×10n形式中,n的值是原数整数位数减1,a则是将原数保留一位整数得来的.
一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.
1.科学记数法的概念
2.a与n的取法
考点三 利用数轴比较有理数的大小
[解析] 由a>0,b<0,可知a为正数,-a为负数,b为负数,-b为正数.又由|a|<| b |可知,b的绝对值大于a的绝对值,可以在数轴上画出示意图,根据数轴上右边的数大于左边的数来比较.
解:如图,将a,-a,b,-b表示在数轴上,
所以b<-a<a<-b.
把所有有理数在数轴上都找到它们的对应点,从而把比较有理数大小的问题直观形象化,达到快速、有效解决问题的目的.
[归纳总结]
考点四 科学记数法
[解析]用科学记数法表示一个大于10的数,就是把这个数表示为a×10n(其中a是整数位数只有一位的数,n是正整数)的形式.因此,准确地理解科学记数法的概念,紧紧抓住a,n的条件是解决此类题的关键.根据科学记数法表示数的规律,当原数大于10时,10的幂指数n=原数整数位数-1,则19400000000=1.9×1010.故选A.
A
针对训练
5.将数13 445 000 000 000km用科学记数法
表示_ _______m.
1.3445×1016
4.2015年末上海市常住人口总数为2415.27万人,用科学记数法表示为 人.
2.41527×107
注意统一单位
考点五 有理数的计算
[解析] 有理数的混合运算的运算顺序:先算乘方,再算乘除,最后算加减.如果有括号,就先算括号里面的.在只含有加、减或只含有乘、除的运算中,应该按从左到右的顺序依次进行运算.
通常把六种基本的有理数运算分成三级:第一级是加减运算;第二级是乘除运算;第三级是乘方和开方(今后将学到)运算,运算顺序的规定是:先高级运算,再低级运算;同级运算一起,按从左到右的顺序进行.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.
[归纳总结]
针对训练
6.计算(1)
(2)
解:(1)原式=-288
(2)原式=
考点六 运用运算律简化运算
有些有理数的混合运算,根据题目特点可以灵活应用运算律进行简便计算,提高解题速度.
[归纳总结]
针对训练
7.计算(1)
(2)
解:(1)原式=14
(2)原式=-3.3
考点七 有理数中的规律问题
例7.有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是______,依次继续下去,…,第2016次输出的结果是______.
3
2
[解析] 前若干次输出的数是12,6,3,8,4,2,1;6,3,8,4,2,1;…;可见,除第一次输出的数外,以后输出的数呈循环的规律,循环节是6,3,8,4,2,1.∵(2016-1)÷6=335×6+5,∴第2016次输出的结果是第336个循环节中的第5个数,即2.
21
针对训练
课堂小结



有理数的分类
按定义分
按正、负分
数有理数运算
运算法则
数轴
相反数
运算律
数有理数的有关概念
倒数
科学记数法
绝对值
见《学练优》本课时练习
课后作业