人教版七年级下册数学:5.1.1相交线课件(共22张PPT)

文档属性

名称 人教版七年级下册数学:5.1.1相交线课件(共22张PPT)
格式 ppt
文件大小 2.2MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-12-28 22:05:27

图片预览

文档简介

1
2
3
4
A
B
C
D
O
A
B
C
D


1
3
4
2


O
A
B
C
D


1
3
4
2


有关概念:
邻补角:如果两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。
对顶角:如果一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。
O
A
B
C
D
探究与发现3
对顶角相等
4
3
2
1
∠1 与∠3在数量上又有什么关系呢?
对顶角相等.
对顶角的性质:
O
A
B
C
D


1
3
4
2


为什么?
已知:直线AB与CD相交于O点(如图),说明∠1=∠3、 ∠2=∠4的理由
解:∵直线AB与CD相交于O点,
∴∠1+∠2=180°、 ∠2+∠3=180°
∴∠1=∠3
同理可得:∠2=∠4
1
练习1、下列各图中∠1、∠2是对顶角吗?为什么?
2
1
2
1
2
)
(
(
(
)
)
1
练习2、下列各图中∠1、∠2是邻补角吗?为什么?
2
1
2
1
2
)
(
(
(
)

5、如图,直线AB,CD,EF相交于点O.
(1)写出∠AOC, ∠BOE的邻补角;
(2)写出∠DOA, ∠EOC的对顶角;
(3)如果∠AOC =50°,求∠BOD ,∠COB的度数。
A
E
D
B
F
C
O
a
b


1
3
4
2


例1、如图,直线a、b相交,∠1=40°,求 ∠2、∠3、∠ 4的度数。
(对顶角相等)
∵∠3=∠1
∠1=40°( )
已知
∴∠3=40°
解:
(等量代换)
∴∠2=180°—∠1=140°
∴∠4=∠2=140°
(对顶角相等)
(邻补角的定义)
变式1:若∠2是∠1的3倍,求∠3的度数?
变式2:若∠2-∠1=400, 求∠4的度数?
解:∵∠DOB=∠ ,( )
=80°(已知)
∴∠DOB=  °(等量代换)
又∵∠1=30°( )
∴∠2=∠ -∠ = - = °
1、一个角的对顶角有 个,邻补角最多有
个,而补角则可以有 个。
3、如图,直线AB、CD相交于O,∠AOC=80°∠1=30°;求∠2的度数.
A
C
B
D
E
1


无数
AOC
∠AOC
DOB
1
80°
30°
50
对顶角相等
已知
二、 填空
80
2、右图中∠AOC的对顶角是 ,
邻补角是 .
∠DOB
∠AOD和∠COB
2
)
)
O
达标测试
一、判断题
1、有公共顶点且相等的两个角是对顶角。( )
2、两条直线相交,有两组对顶角。 ( )
3、两条直线相交所构成的四个角中有一个角是直角,
那么其余的三个角也是直角。 ( )
二、选择题
1、如右图直线AB、CD交于点O,OE为射线,那么( )
A。∠AOC和∠BOE是对顶角;
B。∠COE和∠AOD是对顶角;
C。∠BOC和∠AOD是对顶角;
D。∠AOE和∠DOE是对顶角。
2、如右图中直线AB、CD交于O,
OE是∠BOC的平分线且∠BOE=50度,
那么∠AOE=( )度
(A)80;(B)100;(C)130(D)150。
A
B
C
D
O
E
×


C
C
三、填空
如图1,直线AB、CD交EF于点
G、H,∠2=∠3,∠1=70度。求
∠4的度数。
解:∵∠2=∠ ( )
∠1=70 °( )
∴∠2= (等量代换)
又∵ (已知)
∴∠3= ( )
∴∠4=180°—∠ = ( 的定义)
A
C
D
B
E
F
G
H
1
2
3
4
图1
1
对顶角相等
已知
70°
∠2=∠3
70 °
等量代换
3
110 °
邻补角
解:∵∠AOC=50°(已知)
∴∠AOD=180°—∠AOC=180°—50°
=130°(邻补角的定义)
∵OE平分∠AOD(已知)
∴∠DOE=1/2∠AOD=130°÷2=65°(角
平分线的定义)
四、解答题
直线AB、CD交于点O,OE是∠AOD的平分线,已知∠AOC=50°。求∠DOE的度数。
A
B
C
D
O
E
图2
图中是对顶角量角器,你能说出它测量角的原理吗?
如图,小明想要测量他家房子两堵墙的角度,可他不 知道怎么测量,你能帮他解决这个问题吗?
归纳小结
角的
名称
特 征
性 质
相 同 点
不 同 点






对顶
角相

邻补
角互

②有公共顶点;
③没有公共边
①两条直线相交形成的角;
①两条直线相交而成;
②有公共顶点;
③有一条公共边
①都是两条直线相交而成的角;
③都是成对出现的
②都有一个公共顶点;
②两直线相交时,
对顶角只有两对
邻补角有四对
①有无公共边
作业:
1、书本第8页 2
第9页7、8