沪科版数学九年级下册24.1第2课时 中心对称与中心对称图形课时练及复习要点

文档属性

名称 沪科版数学九年级下册24.1第2课时 中心对称与中心对称图形课时练及复习要点
格式 zip
文件大小 5.2MB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2020-12-29 08:23:21

文档简介

(共15张PPT)
第2课时中心对称与中
心对称图形
知识点一中心对称的概念、性质及作图
1.下列说法正确的是
A.旋转后重合的两个图形成中心对称
B全等的两个图形一定成中心对称
C成中心对称的两个图形一定全等
D.形状相同的两个图形成中心对称
A分点训练打好基础
2如图所示的四组图形中,左边的图形与右边的图形
成中心对称的是
A
B
C
3如图,△ABC与△ABC关于点O成中心对称,则
下列结论不成立的是
A.点A与点A是对称点
B
BBO=BO
C.B∥AB
D/ACB
CAB′
B
4.(教材P4例题变式)如图,四边形ABCD与四边形
EFGH成中心对称,试画出它们的对称中心,并简
要说明理由
H
B
A
E
B
A
解:如图,点O即为对称中心理由如下
四边形ABCD与四边形EFGH成中心对称,
BF、CG均过对称中心
BF、CG的交点即为对称中心
知识点二中心对称图形
5.(2020·青岛中考)下列四个图形中,中心对称图形是
(D)
②@A
A
B
6.(2020·遂宁中考)下列图形中,既是轴对称图形
又是中心对称图形的是
A.等边三角形
B.平行四边形
C.矩形
D正五边形
B综合运用·提升能力
7如图是一个以点A为对称中心的中心对称图形,若
C=90°,∠B=30°,AC=1,则BB的长为(B
A.2
B,4
C.43
D,8
C
B
B
C
8.(易错)如图是一块正方形草地,要在上面修建两条
交叉的小路,使得这两条小路将草地分成的四部分
面积相等,修路的方法有
A.1种
B.2种
C.4种
D.无数种
9如图,在△ABC中,点D是AB边上的中点,已知
AC=4
BC=6
(1)画出△BCD关于点D的中心对称图形
解:(1)所画图形如图所示,
△AED就是所求作的图形
D
E
B
(2)根据图形说明线段CD长的取值范围
(2)由(1)知:△ADE≌
△BDC
则CD=DE,AE=BC.
CEE2CD
AE-ACBC-AC<2CD2<2CD<10.解得110.(2020·宁波中考)图①,图②都是由边长为1的
小等边三角形构成的网格,每个网格图中有3个
小等边三角形已涂上阴影请在余下的空白小等
边三角形中,分别按下列要求选取一个涂上阴影
图①
图②
(1)使得4个阴影小等边三角形组成一个轴对称
图形(共8张PPT)
第2课时中心对称与中心对称图形
要点归纳
知识要点1中心对称
将△ABC绕定点O旋转180得到△ABC′,这时,图形△ABC
定义与图形△ABC关于点O的对称叫作中心对称,点O就是对
称中心
成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分
性质
如图,AO=AO≈1
AA′,BO=BO
BB,CO=C0≈1
画一个图形关于点O成中心对称图形的步骤:
(1)在已知图形上找关键点(如图形的顶点);
画法(2)连接各关键点和点O,并延长,在延长线上截取线段使其等于关键点到点O
的距离,得各关键点关于点O的对称点
(3)顺次连接各对称点
(1)判断一个图形是否为中心对称图形的方法:倒看图形,如果看到的图形与原图一致,则这
解题个图形是中心对称图形,否则不是(如T1)
策略(2)确定对称中心的方法:连接任意一对对应点,取这条线段的中点,则该点是对称中心;或连
接任意两对对应点,这两条线段的交点即是对称中心
知识要点2中心对称图形
把一个图形绕某一个定点旋转180°如果旋转后的图形
能和原图形重合,那么这个图
形叫作中心对称图形,这个
定点就是对称中心
当堂检测
下列图形中,是中心对称图形的是
A
B
2.如图,在□ABCD中,△AOB绕着点O
旋转180°后,能够与△COD重合,那么点A
的对称点是点C,△AOD与△COB关于
点O成中心对称
D
B
3.如图,线段AB和CD关于点O成中心对称,若
B=40°,则∠D的度数为40°;若OA
2cm,则AC的长为4cm
B
4.如图,先作出△ABC关于点O对称的图形
△DEF,再写出两个三角形中的对称点、相等
的线段、相等的角
解:△DEF如图所示
对称点:A和D,B和E,C和F;
相等的线段:AC=DF,AB=DE,BC=EF;
相等的角:∠BAC=∠EDF,∠ABC
DEF,∠ACB=∠DFE
E
D
B
A
B24.1
旋转
第2课时
中心对称和中心对称图形
知识梳理
1.中心对称的概念
把一个图形绕着某一个点旋转  度,如果它能够与另一个图形  ,那么就说这两个图形关于这个点对称,也称  。这个点叫做  ,这两个图形中的对应点叫做关于中心的  。
2.成中心对称的两个图形的特征
(1)关于中心对称的两个图形是  。
(2)关于中心对称的两个图形,对称点所连线段都经过  ,且被  平分。
(3)成中心对称的两个图形,其对应线段位置关系是  或  ,数量关系是  。
3.画已知图形关于某点成中心对称的图形
(1)
画一个点关于某点(对称中心)的对称点的画法是:
①先连接  与  。[]
②延长取  。
(2)
画一个图形关于某点的对称图形的画法是:
①先找出图形中的几个特殊点(如多边形的顶点、线段的端点,圆的圆心
等)。
②画出各点关于某点    的点。
③顺次连接各  。
4.在平面内,一个图形绕某个点旋转  ,如果旋转前后的图形互相重合,那么这
个图形叫做中心对称图形,这个点叫做  。
课堂练习
1.下列两个电子数字成中心对称的是(

2.下图中,是中心对称图形的是(
)
3.图中,既是轴对称图形又是中心对称图形的是(
)
4.下列命题中正确的命题的个数有


①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;
②关于某一点成中心对称的两个三角形能重合;
③两个能重合的图形一定关于某点中心对称;
④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;
⑤成中心对称的两个图形中,对应线段互相平行或共线。
A.1个
B.2个
C.3个
D.4个
5.下列说法中,正确的的是


A.形状和大小完全相同的两个图形成中心对称;
B.成中心对称的两个图形一定重合;
C.成中心对称的两个图形的形状和大小完全重合;
D.旋转后能重合的两个图形成中心对称

6.如图(1),将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是图(2)中的哪一个
(  )?
(1)
.
(?http:?/??/?www.czsx.com.cn?)
(2)
7.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°
的菱形,剪口与第二次折痕所成角的度数应为(  )
A.
15°或30°
B.
30°或45°
C.
45°
或60°D.
30°或60°
8.在①线段、
②角、
③等腰三角形、
④等腰梯形、⑤平行四边形、
⑥矩形、
⑦菱形、
⑧正方形和⑨圆中,是轴对称图形的有______________是中心对称图形的有_______________,既是轴对称图形又是中心对称图形的有____________.
9.上图中的△A′B′C′是由△ABC绕点P旋转180°后得到的图形,根据旋转的性质回答下列问题:
(1)
PA与PA′的数量关系是__。
(2)
∠A
PA′的度数为__。
(3)
线段A
A′经过点P
,且被其__。
(4)△A′B′C′与△ABC
__。
10.在等腰三角形ABC中,∠C=90°,BC=2㎝,如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的位置相距__.
11..作出图中△ABC关于点P成中心对称的图形△A′B′C′.
12.如图(1),已知四边形ABCD和一点O,求作四边形A′B′C′D′,使它与四边形ABCD关于点O对称;如果把O点移至如图(2)所示位置,又该怎么作图呢?
(1)
(2)[]
[]
13.如图,已知四边形ABCD和一点O,O与C重合,求作四边形A′B′C′D′,使它与四边形ABCD关于点O对称.
.
14.如图,△ABC与△A′B′C′关于某一点成中心对称,画出对称中心.
15.如图,已知四边形ABCD关于O点成中心对称,求证:四边形ABCD是平行四边形.