(共22张PPT)
导入新课
某探险者某天到达如
图所示的点A 处时,他准
备估算出离他的目的地,
海拔为3 500 m的山峰顶点
B处的水平距离.他能想出
一个可行的办法吗?
通过这节课的学习,相信你也行.
.
A
B
.
.
问题引入
讲授新课
解与仰俯角有关的问题
一
如图,在进行测量时,从下向上看,视线与水平线上方的夹角叫做仰角;从上往下看,视线与水平线下方的夹角叫做俯角.
例1 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯 角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m).
A
B
C
D
α
β
仰角
水平线
俯角
分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60°.
典例精析
Rt△ABD中,a =30°,AD=
120,所以利用解直角三角形的知识求出BD的长度;类似地可以求出CD的长度,进而求出BC的长度,即求出这栋楼的高度.
解:如图,a = 30°,β= 60°, AD=120.
答:这栋楼高约为277.1m.
A
B
C
D
α
β
建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角为54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m).
A
B
C
D
40m
54°
45°
A
B
C
D
40m
54°
45°
解:在等腰Rt△BCD中,∠ACD=90°,
BC=DC=40m.
在Rt△ACD中 ,
∴AB=AC-BC=55.2-40=15.2 (m).
练一练
例2 如图,小明想测量塔AB的高度.他在D处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至C处.测得仰角为60°,小明的身高1.5 m.那么该塔有多高 (结果精确到1 m),你能帮小明算出该塔有多高吗
D′
A
B′
B
D
C′
C
解:如图,由题意可知,∠AD′B′=30°,∠AC′B′=60°,
D′C′=50m.
∴ ∠D′AB′=60°,∠C′AB′=30°,D′C′=50m ,设
AB′=x m.
D′
A
B′
B
D
C′
C
如图,直升飞机在长400米的跨江大桥AB的上方P点处,在大桥的两端测得飞机的仰角分别为37°和45 °,求飞机的高度 .(结果取整数. 参考数据:sin37°≈0.8,
cos37 °≈0.6,tan 37°≈0.75)
A
B
37°
45°
400米
P
练一练
A
B
O
37°
45°
400米
P
设PO=x米,
在Rt△POB中,∠PBO=45°,
在Rt△POA中,∠PAB=37°,
OB=PO= x米.
解得x=1200.
解:作PO⊥AB交AB的延长线于O.
即
故飞机的高度为1200米.
2、 如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)
50°
140°
520m
A
B
C
E
D
∴∠BED=∠ABD-∠D=90°
答:开挖点E离点D 332.8m正好能使A,C,E成一直线.
解:要使A、C、E在同一直线上,则 ∠ABD是 △BDE 的一个外角
∴ DE=BD. cos∠BDE
《教材》P76 练习:
利用仰俯角解直角三角形
仰角、俯角的概念
运用解直角三角形解决仰角、俯角问题
模型一
模型二
模型三
模型四
仰角、俯角问题的常见基本模型:
A
D
B
E
C
*
【课后作业】完成《学法大视野》
【预习】课本P75—P76《 利用仰俯角解直角三角形》
必做题:《课件》 课堂作业
选做题:《课件》课后提升
课堂作业
1. 如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).
2. 目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.(tan39°≈0.81)
(1) 求大楼与电视塔之间的距离AC;
(2) 求大楼的高度CD(精确到1米).
课后提升
3. 如图,直升飞机在高为200米的大楼AB上方P点处,
从大楼的顶部和底部测得飞机的仰角为30°和45°,
求飞机的高度PO .
45°
30°
O
B
A
200米
P
学有驰,习有张
书山有路勤独秀
学漠无垠恒至洲
——边城高级中学 吴泠华
1. 如图,在电线杆上离地面高度5m的C点处引两根拉
线固定电线杆,一根拉线AC和地面成60°角,另一
根拉线BC和地面成45°角.则两根拉线的总长度为
m(结果用带根号的数的形式表示).
2. 目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.(tan39°≈0.81)
(1) 求大楼与电视塔之间的距离AC;
解:由题意,AC=AB=610(米).
(2) 求大楼的高度CD(精确到1米).
故BE=DEtan39°.
∵CD=AE,
∴CD=AB-DE·tan39°
=610-610×tan39°≈116(米).
解:DE=AC=610(米),
在Rt△BDE中,tan∠BDE= .
45°
30°
O
B
A
200米
3. 如图,直升飞机在高为200米的大楼AB上方P点处,
从大楼的顶部和底部测得飞机的仰角为30°和45°,
求飞机的高度PO .
U
D
P
答案:飞机的高度为
米.