第11章 平面直角坐标系 同步教学设计(共6份资料)

文档属性

名称 第11章 平面直角坐标系 同步教学设计(共6份资料)
格式 zip
文件大小 3.5MB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2020-12-30 09:30:21

文档简介

11.2 图形在坐标系中的平移
1.使学生掌握平面直角坐标系中的点或图形平移引起的点的坐标的变化规律;(重点、难点)
2.使学生看到平面直角坐标系是数与形之间的桥梁,感受到代数与几何的相互转化,初步建立空间观念.
                   
一、情境导入
同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移?
二、合作探究
探究点一:平面直角坐标系中点的平移
将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是________.
解析:向左平移1个单位,横坐标减1,向下平移2个单位,纵坐标减2,于是点(1,2)变为(0,0).故答案为(0,0).
方法总结:根据平移前后图形的坐标关系:①上加下减(纵坐标变化),左减右加(横坐标变化).②正加负减,即向x(y)轴正方向平移,横(纵)坐标增加;负方向平移,横(纵)坐标减小.
探究点二:平面直角坐标系中图形的平移
【类型一】
已知平移方向与距离,确定平移后图形的位置
如图,将三角形ABC先向下平移5个单位,再向左平移3个单位得到三角形A′B′C′,求三角形A′B′C′的顶点坐标,并画出三角形A′B′C′.
解析:按照点的平移规律求出平移后点的坐标,向下平移5个单位,即横坐标不变,纵坐标减5;向左平移3个单位,即纵坐标不变,横坐标减3,再画出图形即可.
解:用箭头表示平移,则有:
A(3,5)→(3,0)→A′(0,0),
B(0,3)→(0,-2)→B′(-3,-2),
C(2,0)→(2,-5)→C′(-1,-5).
画出三角形A′B′C′如上图.
方法总结:画平移后的图形,应先求出平移后各关键点的坐标,再描点连线即可.
【类型二】
由坐标的变化确定平移过程
在如图所示的平面直角坐标系内,画在透明胶片上的平行四边形ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是(  )
A.先向右平移5个单位,再向下平移1个单位
B.先向右平移5个单位,再向下平移3个单位
C.先向右平移4个单位,再向下平移1个单位
D.先向右平移4个单位,再向下平移3个单位
解析:由点A(0,2)变化到点A′(5,-1)知横纵坐标的变化规律,可得出平移方向与距离,即由横坐标加5,纵坐标减3,得出此平移可以是先向右平移5个单位,再向下平移3个单位.故答案为B.
方法总结:①可用排除法,对照备选选项,逐一分析,选择出正确答案.②由坐标定平移口诀:坐标变化定平移,横变纵定左右移,横坐标变大向右移,纵变横定上下移,纵坐标变大向上移,横变纵变两次移.③左右(上下)平移的距离,就是平移前后两点横(纵)坐标差的绝对值.
三、板书设计
本节课的教学过程中,无论是从情境中引入,还是对新知的探究及拓展,始终在努力调动学生学习的积极性.通过探究归纳出点或图形的平移引起的点的坐标的变化规律,积累数学活动经验,提高学生科学思维素养;体验数学活动充满探索性与创造性,激发学生学习数学的兴趣,使学生经历数学思维过程获得成功体验.11.2
图形在坐标系中的平移
一.教学目标:
1、能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换。
2、运用点的坐标的变化规律来进行简单的平移作图
3、经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程,进一步发展数形结合思想与空间观念.
重点:认识直角坐标系,感受点在坐标系中的平移过成及其应用。
难点:根据图形的平移过程,探索、归纳出坐标的变化规律.
一、教学准备:
1、复习数轴的概念及其画法.
2、如图数轴上点A的坐标是
,点A向右平移两个单位后的坐标是
.点B的坐标是
,点B向左平移3个单位后的坐标是
.
从数轴上的点的坐标平移你发现了什么?说出来让大家分享你的重大发现.
.
二、探究活动:
1、下面平面直角坐标系中点A的坐标是(

),点A向右平移4个单位后坐标是(

);点A向左平移2个单位后的坐标是(

);你能写出点A向右平移25个单位后的坐标是(

)吗?你发现点A平移前后横坐标、纵坐标有什么变化?能找出其中的规律吗?把你的重大发现写在横线上,与大家一起分享.
2、仿照你刚才的重大发现,点B上下平移时,横坐标、纵坐标有什么变化?把你的想法写出来
3、我想把点A移到点B处,你帮我移动吗?说说你是如何移动的、有多少种方法?你最喜欢哪种方法?
三、走进核心地带
1、在图中标出△ABC各顶点的
坐标.
2、△ABC向右平移

单位得到△A1B1C1的,在
图中标出△A1B1C1各点的
坐标,观察各点坐标都发生
怎样的变化?
3、智慧大提速:△ABC是
怎样平移到△A2B2C2的?
看出门道了吗?
说出来大家听听
.
4、小组大讨论:把直角坐标系中的一个图形按下列要求平移,那么图形中的一点的坐标是(x,y)将如何变化?(这里a>0,b>0)
(1)(x,y)



(2)(x,y)



(3)(x,y)



(4)(x,y)



(5)(x,y)



(6)(x,y)



四、分组讨论
小试牛刀
1、如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标。(2)我想把房子向下平移3个单位长度,你能帮我办到吗?请作出相应图案,并写出平移后的7个点的坐标。
2、看你牛刀咋样:一个图形上有两个点A、B,A(1,2)平移到Aˊ(3,5)、B同时平移到Bˊ(1,2),则B的坐标是(

).
五:本节课思维导图
下图中的知识点你都掌握了吗?
六、当堂检测
向右平移a个单位
向左平移a个单位
向上平移b个单位
向下平移b个单位
向左平移a再向上平移b个单位
向右平移a再向下平移b个单位第11章
平面直角坐标系
11.1
平面内点的坐标
第1课时
平面直角坐标系及点的坐标
一、教学内容
本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。
二、教学目标
1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;
2、经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;
3、培养学生自主探究与合作交流的学习习惯。
三、教学重点
正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。
四、教学难点
各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。
五、教学关键:充分体会有序实数对在实际中的应用
六、教学准备:多媒体教学课件、三角尺
七、教学方法:探讨、合作[]
八、教学过程:
(一)设置问题情境:
1、回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)
2、情境:(多媒体显示)
[]
(1)如图所示请指出数轴上A、B两点所表示的数;直线表一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?
引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。怎样确定平面上一个点的位置呢?
(2)上电影院看电影,电影票上至少要有几个数据才能确定你的位置?
(3)在教室里,怎样确定一个同学的位置?
(二)观察交流,构建新知
观察、交流、思考,回答教科书第2页的两个问题。
思考:1、确定平面上一点的位置需要什么条件?
2、既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?
教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。这个平面叫做坐标平面。
有了坐标平面,平面内的点就可以用一个有序实数对来表示。
引导观察:如左图中点P可以这样表示:由P
向x轴作垂线,垂足M在x轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标3,把横坐标写在纵坐标前面记作(-2,3),即P点坐标(-2,3)。
引导练习:写出点A、B、C的坐标。
学生相互交流,得出正确答案。
(强调点的坐标的有序性和正确规范书写)
教师提问:已知平面内任意一点,可以写出它的坐标;反之,给出一点的坐标,你能在上图中描出吗?
试一试:D(1,3)
E(-3,2)
F(-4,-1)
(注意引导学生进行逆向思维)
教师提问:请同学们想一想:原点O的坐标、x轴和y轴上的点坐标有什么特点?
学生发现:O点坐标(0,0),x轴上点的纵坐标为0,y轴上点横坐标为0。试一试:描点:G(0,1),H(1,0)
(注意区别)
(三)观察思考,探究规律
教师讲解:两条坐标轴把坐标平面分成四个部分:右上部分叫第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限、和第四象限。坐标轴不属于任何象限。
学生活动:观察、认知上图中各象限内已描出各点的坐标特点:第一、二、三、四象限内的点的坐标符号分别是:(+,+)、(—,+)、(—,—)、(+,—)
(四)随堂练习
1、完成教材第3和第4页的1、2两个问题
2、多媒体展示的练习题。
(五)课堂小结:(投影显示,学生归纳)
本节课我们学面直角坐标系。学习本节我们要掌握以下三方面的知识内容:
1、能够正确画出直角坐标系。
2、能在直角坐标系中,根据坐标找出点,由点求出坐标。坐标平面内的点和有序实数对是一一对应的。
3、掌握象限点、x轴及y轴上点的坐标的特征:
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0)
y轴上的点的横坐标为0,表示为(0,y)
(六)布置作业
1、习题11.1第1、2题
2补充:点P(m
,4-m)是第二象限的点,求m的取值范围。
3、已知三点A(0,4)、B(-3,0)、C(3,0)现以A、B、C为顶点画平行四边形,写出符合条件的D点坐标。11.1 平面内点的坐标
第1课时 平面直角坐标系及点的坐标
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系;
2.理解各象限内及坐标轴上的点的坐标的特征;(重点)
3.会用象限或坐标轴说明直角坐标系内点的位置,能根据点的位置确定横、纵坐标的符号.(难点)
                   
一、情境导入
我们已经学过了数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图.
那么,如何确定平面内点的位置呢?
二、合作探究
探究点一:认识平面直角坐标系
如图所示,点A、点B所在的位置是(  )
A.第二象限,y轴上
B.第四象限,y轴上
C.第二象限,x轴上
D.第四象限,x轴上
解析:根据点在平面直角坐标系中的位置来判定.点A在第四象限,点B在x轴正半轴上.故选D.
方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.
探究点二:各象限内及坐标轴上的点的坐标的特征
【类型一】
已知点的坐标判断点所在的象限
设点M(a,b)为平面直角坐标系内的点.
(1)当a>0,b<0时,点M位于第几象限?
(2)当ab>0时,点M位于第几象限?
(3)当a为任意有理数,且b<0时,点M位于第几象限?
解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)b<0,则点M在x轴下方.
解:(1)点M在第四象限;
(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);
(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.
方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点,(-,+)表示第二象限内的点,(-,-)表示第三象限内的点,(+,-)表示第四象限内的点.
【类型二】
根据点所在的象限求字母的取值范围
在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.
解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组解得m>2.故答案为m>2.
方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.
【类型三】
坐标轴上点的坐标特征
点A(m+3,m+1)在x轴上,则A点的坐标为(  )
A.(0,-2)
B.(2,0)
C.(4,0)
D.(0,-4)
解析:点A(m+3,m+1)在x轴上,根据x轴上点的坐标特征知m+1=0,求出m的值代入m+3中即可.故选B.
方法总结:坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.
【类型四】
由点到坐标轴的距离确定点的位置
已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是(  )
A.(2,-1)
B.(1,-2)
C.(-2,-1)
D.(1,2)
解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为-2;由点P到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).故选B.
方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P到x轴的距离”对应的是纵坐标,与“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.
【类型五】
已知点的坐标在坐标系中描点
在如图的直角坐标系中描出下列各点:
A(4,3),B(-2,3),C(-4,-1),D(2,-3).
解析:本题关键就是已知点的坐标,如何描出点的位置,以描点B(-2,3)为例,即在x轴上找到坐标-2,过-2对应的点作x轴的垂线,再在y轴上找到坐标3,过3对应的点作y轴的垂线,与前垂线的交点即为B(-2,3),同理可描出其他三个点.
解:如图所示:
方法总结:在直角坐标系中描出点P(a,b)的方法:先在x轴上找到数a对应的点M,在y轴上找到数b对应的点N,再分别由点M、点N作x轴、y轴的垂线,两垂线的交点就是所要描出的点P.已知坐标平面上的点的坐标,描出对应点的位置,反过来在坐标平面上给一点,找出它对应的坐标,熟练掌握平面直角坐标系是解题的关键.
三、板书设计
通过平面直角坐标系的有关内容的学习,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习的积极性.第2课时 坐标平面内的图形
1.在给定的直角坐标系中,会根据坐标描出点的位置,并能求出顺次连接所得图形的面积;(重点)
2.能建立适当的直角坐标系,描述图形的位置;(难点)
3.通过用直角坐标系表示图形的位置,使学生体会平面直角坐标系在实际问题中的应用.
                   
一、情境导入
某小区里有一块如图所示的空地,打算进行绿化,小明想请他的同学小慧提一些建议,小明要在电话中告诉小慧同学如图所示的图形,为了描述清楚,他使用了直角坐标系的知识.你知道小明是怎样叙述的吗?
二、合作探究
探究点一:在坐标平面内描点作图
在平面直角坐标系中(每个小方格的边长为单位1)描出下列各点,并将各点用线段依次连接起来:A(0,2),B(-1,-2),C(2,0),D(-2,0),E(1,-2),A(0,2);观察得到的图形,你觉得它的形状像什么?
解析:根据网格结构找出各点的位置,然后顺次连接即可.
解:如图所示,形状像五角星.
方法总结:本题考查了坐标与图形性质,在平面直角坐标系中准确找出各点的位置是解题的关键.
探究点二:坐标平面内图形面积的计算
如图,已知点A(2,-1),B(4,3),C(1,2),求△ABC的面积.
解析:本题宜用补形法.过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,然后根据S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA即可求出△ABC的面积.
解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F.∵A(2,-1),B(4,3),C(1,2),∴BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA=BD·DE-DC·DB-CE·AE-AF·BF=12-1.5-1.5-4=5.
方法总结:主要考查如何利用简单方法求坐标系中图形的面积.已知三角形三个顶点坐标,求三角形面积通常有三种方法:
方法一:直接法,计算三角形一边的长,并求出该边上的高;
方法二:补形法,将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差;
方法三:分割法,选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.
探究点三:建立适当的直角坐标系描述图形的位置
【类型一】
根据点的坐标确定直角坐标系
右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋?的坐标是________.
解析:由已知白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),可知y轴应在从左往右数的第四条格线上,且向上为正方向,x轴在从上往下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋②的坐标是(1,-2).故答案为(1,-2).
方法总结:根据点的坐标确定平面直角坐标系时,先将点的坐标进行上下左右平移得到原点的坐标,过这个点的水平线为x轴、铅直线为y轴.
【类型二】
根据几何图形建立直角坐标系并求点的坐标
长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.
解析:以点(-2,-3)向右2个单位,向上3个单位建立平面直角坐标系,然后画出长方形,再根据平面直角坐标系写出各点的坐标即可.
解:如图建立直角坐标系,∵长方形的一个顶点的坐标为A(-2,-3),∴长方形的另外三个顶点的坐标分别为B(2,-3),C(2,3),D(-2,3).
方法总结:由已知条件正确确定坐标轴的位置是解决本题的关键,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐标系确定以后,点的坐标也就确定了.
三、板书设计
通过学习建立直角坐标系的多种方法,让学生体验数学活动充满着探索性与创造性,激发学生的学习兴趣,感受数学在生活中的应用,增强学生的数学应用意识,让学生认识数学与人类生活的密切联系,提高他们学习数学的兴趣.12.1
平面内点的坐标
第2课时
坐标平面内的图形
教学思路(纠错栏)
教学思路(纠错栏)
学习目标:1.在给定的平面直角坐标系中,会由坐标描点并按要求连线,识别图形,计算面积。2.根据实际问题建立合理的直角坐标系解决一些简单的实际问题,发展数形结合思想和运用数学解决问题的能力。学习重点:描点、连线、看图、解决问题。学习难点:正确认识坐标的形成,为画图做好准备。☆
自主学习
☆一、链接:1.在直角坐标系中,各象限内的点的坐标符号有什么特点?
已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a
=
.2.在图1中,描出下列各点:A(﹣3
,﹣3

B(2.5
,0
)C(1.5
,1

D(2
,﹣3.5
)E(0
,4

F(﹣3
,1
)二、导读:认真预习课本,思考以下题目:1.计算三角形、平行四边形的面积公式是什么?
关键是怎样在坐标平面内找到它们的底和高?
如果遇到不规则的图形怎么办?2.你看到一个有趣的多边形图,而你的好同学没看到,你怎样用坐标方法向他描述,让他能准确地画出这个图形呢?☆
合作探究
☆1.建立平面直角坐标系,并描出下列各点:A(2,0),B(1,3),C(﹣2,﹣2),D(1,﹣2);然后依次连接A→B→C→D→A;请你观察一下,得到的是什么图形,算出它的面积.2.在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0)求出这个四边形的面积.☆
归纳反思
☆通过本节课的学习,我有以下收获:1.在坐标系中,求多边形的面积,常通过向坐标轴作垂线,将多边形分割成直角三角形、直角梯形、长方形等的面积和继续计算.2.________________________________________________________________☆
达标检测

1.坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在

)A.第一象限
B.第二象限
C.第三象限
D.第四象限2.点P(m
,4﹣m)是第二象限的点,求m的取值范围.
3.如图,三角形AOB中,A,B两点的坐标分别为(2,4),(6,2),求三角形AOB的面积.4.如图4,这是某市部分简图,小明现在的位置是在火车站,若小明想到图中其他几个地方去,请你用电话准确告诉他,试试看!
图1
图2
图3
图4