2020_2021学年新教材高中数学课时素养评价第5章函数概念与性质含解析(7份打包)苏教版必修第一册

文档属性

名称 2020_2021学年新教材高中数学课时素养评价第5章函数概念与性质含解析(7份打包)苏教版必修第一册
格式 zip
文件大小 2.0MB
资源类型 教案
版本资源 苏教版(2019)
科目 数学
更新时间 2020-12-30 19:08:29

文档简介

课时素养评价二十六 函数奇偶性的应用
(15分钟 35分)
1.已知函数y=f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则当x<0时,f(x)的解析式是
(  )
A.f(x)=-x2+2x-3
B.f(x)=-x2-2x-3
C.f(x)=x2-2x+3
D.f(x)=-x2-2x+3
【解析】选B.若x<0,则-x>0,因为当x>0时,f(x)=x2-2x+3,所以f(-x)=x2+2x+3,因为函数f(x)是奇函数,所以f(-x)=x2+2x+3=-f(x),所以f(x)=-x2-2x-3,所以x<0时,f(x)=-x2-2x-3.
2.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=x2+3x+1,则f(x)等于
(  )
A.x2
B.2x2
C.2x2+2
D.x2+1
【解析】选D.因为f(x)+g(x)=x2+3x+1,①
所以f(-x)+g(-x)=x2-3x+1.
又f(x)是偶函数,且g(x)是奇函数,
所以f(x)-g(x)=x2-3x+1.②
由①②联立,得f(x)=x2+1.
3.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则
(  )
A.f(-x1)>f(-x2)
B.f(-x1)=f(-x2)
C.f(-x1)D.f(-x1)与f(-x2)的大小关系不确定
【解析】选A.因为x2>-x1>0,f(x)在(0,+∞)上单调递减,所以f(x2)又f(x)是R上的偶函数,所以f(-x2)=f(x2),
所以f(-x2)4.函数f(x)是定义在实数集上的偶函数,且在[0,+∞)上是增函数,f(3)<
f(2a+1),则a的取值范围是
(  )
A.a>1
B.a<-2
C.a>1或a<-2
D.-1【解析】选C.因为函数f(x)在实数集上是偶函数,且f(3)所以3<|2a+1|,解得a>1或a<-2.
5.函数f(x)在R上为偶函数,且x>0时,f(x)=+1,则当x<0时,f(x)=
________.?
【解析】因为f(x)为偶函数,x>0时,f(x)=+1,
所以当x<0时,-x>0,f(x)=f(-x)=+1,即x<0时,f(x)=+1.
答案:+1
6.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=,求函数f(x),g(x)的解析式.
【解析】因为f(x)是偶函数,g(x)是奇函数,
所以f(-x)=f(x),g(-x)=-g(x).
由f(x)+g(x)=,①
用-x代替x得f(-x)+g(-x)=,
所以f(x)-g(x)=,②
(①+②)÷2,得f(x)=;
(①-②)÷2,得g(x)=.
(30分钟 60分)
一、单选题(每小题5分,共20分)
1.若奇函数f(x)在(-∞,0)上的解析式为f(x)=x(1+x),则f(x)在(0,+∞)上有
(  )
A.最大值-
B.最大值
C.最小值-
D.最小值
【解析】选B.方法一(直接法):当x>0时,-x<0,
所以f(-x)=-x(1-x).又f(-x)=-f(x),
所以f(x)=x(1-x)=-x2+x
=-+,
所以f(x)有最大值.
方法二(奇函数的图象特征):当x<0时,
f(x)=x2+x=-,
所以f(x)有最小值-,因为f(x)是奇函数,
所以当x>0时,f(x)有最大值.
2.(2020·泰安高一检测)设F(x)=f(x)+f(-x),x∈R,若是函数F(x)的增区间,则一定是F(x)的减区间的是
(  )
A.
B.
C.
D.
【解析】选B.因为F(-x)=F(x),所以F(x)是偶函数,因而在上F(x)是减函数.
3.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f与f的大小关系是
(  )
A.f>f
B.fC.f≥f
D.f≤f
【解析】选C.因为a2+2a+=(a+1)2+≥,又因为f(x)是偶函数,且在[0,+∞)上是减函数,所以f≤f=f.
4.(2020·襄阳高一检测)已知偶函数f(x)在区间[0,+∞)上是减函数,则满足f(2x-1)>f的实数x的取值范围是
(  )
A.
B.
C.
D.
【解析】选A.因为偶函数f(x)在区间[0,+∞)上是减函数,且满足f(2x-1)>f,所以不等式等价为f(|2x-1|)>f,即|2x-1|<,所以-<2x-1<,计算得出【误区警示】利用偶函数的单调性解不等式,别忘了转化为绝对值不等式求解.
二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)
5.若函数y=f(x)是偶函数,定义域为R,且该函数图象与x轴的交点有3个,则下列说法正确的是
(  )
A.3个交点的横坐标之和为0
B.3个交点的横坐标之和不是定值,与函数解析式有关
C.f(0)=0
D.f(0)的值不能确定
【解析】选AC.由于偶函数图象关于y轴对称,若(x0,0)是函数与x轴的交点,则(-x0,0)一定也是函数与x轴的交点,当交点个数为3个时,有一个交点一定是原点,从而AC正确.
6.设y=f(x)为偶函数,且在区间(-∞,0)内单调递增,f(-2)=0,则下列区间中使得xf(x)<0的有
(  )
A.(-1,1)
B.(0,2)
C.(-2,0)
D.(2,4)
【解析】选CD.根据题意,偶函数f(x)在(-∞,0)上是增函数,又f(-2)=0,则函数f(x)在(0,+∞)上是减函数,且f(-2)=f(2)=0,函数f(x)的草图如图,
又由xf(x)<0?或,
由图可得-22,
即不等式的解集为(-2,0)∪(2,+∞).
三、填空题(每小题5分,共10分)
7.如果函数F(x)=是奇函数,则f(x)=________.?
【解题指南】根据求谁设谁的原则,设x<0,根据函数的奇偶性求出x<0时的解析式.
【解析】当x<0时,-x>0,F(-x)=-2x-3,
又F(x)为奇函数,故F(-x)=-F(x),
所以F(x)=2x+3,即f(x)=2x+3.
答案:2x+3
【补偿训练】
  设函数y=f(x)是偶函数,它在[0,1]上的图象如图.则它在[-1,0]上的解析式为________.?
【解析】由题意知f(x)在[-1,0]上为一条线段,且过(-1,1),(0,2),设f(x)=kx+b,代入解得k=1,b=2.所以f(x)=x+2.
答案:f(x)=x+2
8.(2020·南京高一检测)已知y=f(x)是R上的奇函数,当x≥0时,f(x)=x2-5x,则f(x-1)>f(x)的解集为________.?
【解析】根据题意,设x<0,则-x>0,
所以f(-x)=x2+5x,
又由f(x)是定义在R上的奇函数,
所以f(x)=-f(-x)=-x2-5x,
则有f(x)=其图象如图:
则f(x)在上是减函数,
当x<0时,f(x)=-x2-5x,
其对称轴为x=-,
当x≥0时,f(x)=x2-5x,其对称轴为x=,
若f(x-1)>f(x),则有-3解得:-2答案:(-2,3)
四、解答题(每小题10分,共20分)
9.已知函数y=f(x)是定义域为R的偶函数,且当x≥0时,f(x)=-x2+2x.
(1)求出函数f(x)在R上的解析式.
(2)画出函数f(x)的图象.
(3)根据图象,写出函数f(x)的减区间及值域.
【解析】(1)因为函数f(x)是定义域为R的偶函数,所以f(x)=f(-x).
当x<0时,-x>0,
所以f(x)=f(-x)=-x2-2x.
综上,f(x)=
(2)函数f(x)的图象如图所示:
(3)由(2)中图象可知,f(x)的减区间为[-1,0],[1,+∞),
函数f(x)的值域为(-∞,1].
10.函数f(x)=,
(1)判断函数是否具有奇偶性.
(2)判断函数在(-∞,0)上的单调性,并证明.
【解析】(1)f(x)=的定义域为{x|x≠0},
因为对于任意x∈{x|x≠0},都有-x∈{x|x≠0},且f(-x)===f(x),
所以函数f(x)为偶函数.
(2)函数f(x)在(-∞,0)上是增函数,
证明如下:任取(-∞,0)上的任意两个值x1,x2,且x1所以f(x1)-f(x2)=-=
=,
因为x1,x2∈(-∞,0),且x1所以x2-x1>0,x2+x1<0,
所以<0,
即f(x1)则函数f(x)在(-∞,0)上是增函数.
1.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.?
【解析】因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,则|x+2|2-4|x+2|<5,
即(|x+2|+1)(|x+2|-5)<0,
所以|x+2|<5,解得-7所以不等式f(x+2)<5的解集是(-7,3).
答案:(-7,3)
2.(2020·南京高一检测)已知偶函数f(x)=的定义域为E,值域为F.
(1)求实数b的值;
(2)若E={1,2,a},F=,求实数a的值.
(3)若E=,F=[2-3m,2-3n],求m,n的值.
【解析】(1)因为f(x)为偶函数,
所以f(-x)=f(x),
即=,
所以b=-1;
(2)因为f(2)=,f(1)=0,
所以①令f(a)=0,即=0,a=±1,a=1不满足集合的互异性,故a=-1;
②令f(a)=,即=,a=±2,a=2不满足集合的互异性,故a=-2,
综上,a=-1或-2;
(3)因为f(x)=是偶函数,且f(x)=1-,所以函数f(x)在(-∞,0)上是减函数,
在(0,+∞)上是增函数.
因为x≠0,
所以由题意可知:<<0或0<<.
若<<0,则有

此时方程组无负解;
若0<<,则有

所以m,n为方程x2-3x+1=0的两个根.
因为0<<,所以m>n>0,
所以m=,n=.
PAGE课时素养评价二十五 函数奇偶性的概念
(15分钟 35分)
1.函数f(x)=-x的图象关于
(  )
A.y轴对称
B.直线y=-x对称
C.坐标原点对称
D.直线y=x对称
【解析】选C.函数f(x)=-x是奇函数,其图象关于坐标原点对称.
2.下列各图中,表示以x为自变量的奇函数的图象是
(  )
【解析】选B.A,D不是函数;C是偶函数.
3.已知f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)等于
(  )
A.-26
B.-18
C.-10
D.10
【解析】选A.令g(x)=x5+ax3+bx,
函数f(x)的定义域为R.
因为对于任意x∈R,都有-x∈R,且g(-x)=-g(x),所以g(x)为奇函数.
又因为f(x)=g(x)-8,所以f(-2)=g(-2)-8=10?g(-2)=18.所以g(2)=-18.
所以f(2)=g(2)-8=-18-8=-26.
4.若f(x)=(ax+1)(x-a)为偶函数,且函数y=f(x)在x∈(0,+∞)上是增函数,则实数a的值为
(  )
A.±1
B.-1
C.1
D.0
【解析】选C.因为f(x)=(ax+1)(x-a)=ax2+(1-a2)x-a为偶函数,所以1-a2=0.
所以a=±1.
当a=1时,f(x)=x2-1,在(0,+∞)上是增函数,满足条件;当a=-1时,f(x)=-x2+1,在(0,+∞)上单调递减,不满足条件.
5.已知函数f(x)为R上的奇函数,且当x>0时,f(x)=x2+,则f(-1)=________.?
【解析】当x>0时f(x)=x2+,所以f(1)=1+1=2.又f(x)为奇函数,所以f(-1)=-2.
答案:-2
6.(2020·南京高一检测)设函数f(x)=x2-4|x|+3,(x∈[-4,4]).
(1)求证:f(x)是偶函数;
(2)画出函数y=|f(x)|的图象,指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;(不需要证明)
(3)求函数|f(x)|的值域.
【解析】(1)函数的定义域关于原点对称,
f(-x)=(-x)2-4|-x|+3=x2-4|x|+3
=f(x),
则f(x)是偶函数.
(2)由f(x)=x2-4|x|+3>0得|x|>3或|x|<1,
即y=|f(x)|
=
则对应的图象如图:
由图象知函数的增区间为[-3,-2],[-1,0],[1,2],[3,4],
减区间为[-4,-3),(-2,-1),(0,1),(2,3).
(3)当x=0或x=4或x=-4时,函数|f(x)|取得最大值为|f(0)|=3,
函数的最小值为0,即函数|f(x)|的值域为[0,3].
(20分钟 40分)
一、选择题(每小题5分,共20分)
1.若y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是
(  )
A.(a,-f(a))
B.(-a,-f(a))
C.(-a,-f(-a))
D.(a,f(-a))
【解析】选B.因为f(x)为奇函数,所以f(-a)=-f(a),所以点(-a,-f(a))在函数y=f(x)的图象上.
2.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=
(  )
A.3
B.1
C.-1
D.-3
【解析】选D.因为f(x)为定义在R上的奇函数,
所以有f(0)=20+2×0+b=0,解得b=-1,
所以当x≥0时,f(x)=2x+2x-1,
所以f(-1)=-f(1)=-(21+2×1-1)=-3.
3.已知函数f(x)=ax3+bx++5,满足f(-3)=2,则f(3)的值为
(  )
A.8
B.-8
C.10
D.-10
【解析】选A.因为f(x)=ax3+bx++5,
所以f(-x)=-ax3-bx-+5,
即f(x)+f(-x)=10.
所以f(-3)+f(3)=10,又f(-3)=2,
所以f(3)=8.
4.(多选题)下列函数中,既是奇函数又是减函数的为
(  )
A.y=-x
B.y=-x2
C.y=
D.y=-x|x|
【解析】选AD.A项,函数y=-x既是奇函数又是减函数;B项,y=-x2是偶函数,故B项错误;C项,函数y=是奇函数,但是y=在(-∞,0)或(0,+∞)上是减函数,在定义域上不具有单调性,故C项错误;D项,函数y=-x|x|可化为y=
其图象如图:
故y=-x|x|既是奇函数又是减函数,故D项正确.
【光速解题】分别判断4个选择项的奇偶性,排除B,再判断A、C、D的单调性,排除C.
二、填空题(每小题5分,共10分)
5.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+mx+1,若f(2)=3f(-1),则m=________.?
【解析】因为x>0时,f(x)=x2+mx+1,
所以f(2)=5+2m,f(1)=2+m,
又f(-1)=-f(1)=-2-m,
所以5+2m=3(-2-m),所以m=-.
答案:-
6.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)=________,
f(0)=________.?
【解析】由题意知f(-2)=-f(2)=-(22+1)=-5,f(0)=0.
答案:-5 0
三、解答题
7.(10分)(2020·南京高一检测)已知函数f(x)=x+(a∈R,x≠0).
(1)讨论f(x)的奇偶性,并说明理由;
(2)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围.
【解析】(1)根据题意,对于函数f(x)=x+,
若a=0,则f(x)=x,易得f(x)为奇函数,
若a≠0,则f(x)=x+,其定义域为{x|x≠0},
f(-x)=-x+,有f(-x)≠f(x)且f(-x)≠-f(x),f(x)为非奇非偶函数;
(2)根据题意,当x≥1,则有f(x)=x+,
设1≤x1若f(x)在区间[1,+∞)上是增函数,
则f(x1)-f(x2)=(x1-x2)<0,
又由1≤x1则有>0,即x1x2-a>0,必有a≤1,
故a的取值范围为(-∞,1].
PAGE课时素养评价二十四 函数的最大值、最小值
(15分钟 35分)
1.函数y=x2+2x-1在[0,3]上的最小值为
(  )
A.0
B.-4
C.-1
D.-2
【解析】选C.因为y=x2+2x-1=(x+1)2-2,其图象的对称轴为直线x=-1,
所以函数y=x2+2x-1在[0,3]上是增函数,
所以当x=0时,此函数取得最小值,最小值为-1.
2.函数f(x)=的最大值是
(  )
A.
B.
C.
D.
【解析】选D.令t=1-x(1-x)=+≥,所以0即f(x)的最大值为.
3.(2020·海淀高一检测)设函数f(x)=4x+-1(x<0),则f(x)
(  )
A.有最大值3
B.有最小值3
C.有最小值-5
D.有最大值-5
【解析】选D.当x<0时,f(x)=4x+-1
=-(-4x)+-1≤-2-1=-5.
当且仅当-4x=-,即x=-时,上式取等号.
所以f(x)有最大值为-5.
4.(2020·成都高一检测)函数f(x)=2x-的最小值为________.?
【解析】因为f(x)=2-2
=2-,
所以f(x)min=f=-.
答案:-
5.对于函数f(x),在使f(x)≥M恒成立的所有实数M中,我们把M的最大值Mmax叫做函数f(x)的下确界,则对于a∈R,f(a)=a2-4a+6的下确界为________.?
【解析】f(a)=a2-4a+6,f(a)≥M,
即f(a)min≥M.
而f(a)=(a-2)2+2,所以f(a)min=f(2)=2.
所以M≤2.所以Mmax=2.
答案:2
6.(2020·温州高一检测)已知函数f(x)=x2+.
求函数f(x)在区间[-3,-1]上的最值.
【解析】设x1,x2是[-3,-1]上的任意两个值,
且x1=-
=(x1-x2)(x1+x2)-,
又由-3≤x1则有(x1+x2)-<0,
则有f(x1)-f(x2)>0,
故函数f(x)在区间[-3,-1]上是减函数,
故f(x)max=f(-3)=4,
f(x)min=f(-1)=-.
(30分钟 60分)
一、单选题(每小题5分,共20分)
1.函数y=x+的最值的情况为
(  )
A.最小值为,无最大值
B.最大值为,无最小值
C.最小值为,最大值为2
D.最大值为2,无最小值
【解析】选A.因为y=x+在定义域,+∞上是增函数,
所以函数最小值为,无最大值.
2.(2020·连云港高一检测)已知a>,则函数f(x)=x2+|x-a|的最小值是
(  )
A.a2+1
B.a+
C.a-
D.a-
【解析】选D.函数f(x)=x2+|x-a|=
当x≥a>时,函数f(x)=x2+x-a的对称轴方程为x=-,
函数在[a,+∞)上是增函数,其最小值为a2;
当x因为a2-=a2-a+=>0.
所以a2>a-.
所以函数f(x)=x2+|x-a|的最小值是a-.
3.对任意x∈R,函数f(x)表示-x+3,x+,x2-4x+3中的最大者,则f(x)的最小值为
(  )
A.2
B.3
C.4
D.5
【解析】选A.分别作出y=-x+3,y=x+,y=x2-4x+3的图象如图(阴影部分边界对应的曲线为ABCDE),
则由图象可知函数f(x)在C处取得最小值,
由得
即f(x)的最小值为2.
4.(2020·无锡高一检测)若关于x的不等式x2-mx+4>0在x∈[1,3]上有解,则实数m的取值范围为
(  )
A.(-∞,5)
B.(-∞,5]
C.(-∞,4)
D.(-∞,-4)∪(4,+∞)
【解析】选A.关于x的不等式x2-mx+4>0在x∈[1,3]上有解,
即m设f(x)=x+,则f(x)在(0,2]上是减函数,在[2,+∞)上是增函数,
故当x=2时,f(x)取得最小值4,
又f(1)=5,f(3)=,故当x=1时,函数f(x)取得最大值.则实数m<5.
二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)
5.下列关于函数y=ax+1,x∈[0,2]的说法正确的是
(  )
A.当a<0时,此函数的最大值为1,最小值为2a+1
B.当a<0时,此函数的最大值为2a+1,最小值为1
C.当a>0时,此函数的最大值为1,最小值为2a+1
D.当a>0时,此函数的最大值为2a+1,最小值为1
【解析】选AD.当a<0时,函数y=ax+1在区间[0,2]上是减函数,
当x=0时,函数取得最大值为1;当x=2时,函数取得最小值为2a+1.
当a>0时,函数y=ax+1在区间[0,2]上是增函数,当x=0时,函数取得最小值为1,当x=2时,函数取得最大值为2a+1.
6.函数y=(x≠1)的定义域为[2,5),下列说法正确的是
(  )
A.最小值为
B.最大值为4
C.无最大值
D.无最小值
【解析】选BD.函数y==1+在[2,5)上是减函数,即在x=2处取得最大值4,
由于x=5取不到,则最小值取不到.
三、填空题(每小题5分,共10分)
7.二次函数y=ax2+4x+a的最大值是3,则a=________.?
【解析】根据题意,二次函数y=ax2+4x+a的最大值是3,则解得a=-1.
答案:-1
8.(2020·杭州高一检测)对于任意的实数x1,x2,min{x1,x2}表示x1,x2中较小的那个数,若f(x)=2-x2,g(x)=x,则集合{x|f(x)=g(x)}=________;min{f(x),g(x)}的最大值是________.?
【解析】由题作出函数f(x),g(x)的图象,
令f(x)=g(x),即2-x2=x,
解得x=-2或x=1,
则集合{x|f(x)=g(x)}={-2,1},
由题意及图象得
min{f(x),g(x)}=
由图象知,当x=1时,min{f(x),g(x)}最大,最大值是1.
答案:{-2,1} 1
四、解答题(每小题10分,共20分)
9.(2020·常州高一检测)已知二次函数f(x)=ax2+bx+c(a>0),对称轴为直线x=2,且f(0)=1.
(1)若函数f(x)的最小值为-1,求f(x)的解析式;
(2)函数f(x)的最小值记为g(a),求函数H(a)=a·g(a)的最大值.
【解析】(1)因为f(x)的对称轴为直线x=2,
所以-=2,则b=-4a.
又f(0)=1,所以c=1.
所以f(x)=ax2-4ax+1=a(x-2)2+1-4a,
因为a>0,所以当x=2时f(x)有最小值1-4a=-1,
所以a=,所以f(x)=x2-2x+1.
(2)由(1)知f(x)=ax2-4ax+1=a(x-2)2+1-4a.
所以g(a)=f(2)=1-4a.
所以H(a)=a(1-4a)=-4+,
a∈(0,+∞),
所以H(a)的最大值为.
10.(2020·太原高一检测)已知函数f(x)=,g(x)=x-1.
(1)求解不等式f(x)≥g(x).
(2)若x>,求y=3f(x)+2g(x)的最小值.
【解析】(1)当x>时,由f(x)≥g(x),得(2x-1)(x-1)≤3,解得当x<时,由f(x)≥g(x),得(2x-1)(x-1)≥3,解得x≤-.
所以不等式f(x)≥g(x)的解集为x(2)因为y=3f(x)+2g(x),x>,
所以3f(x)+2g(x)=+2-1≥2-1=5,
当且仅当4=9,即x=2(负值舍去)时取等号,故当x>时,函数y=3f(x)+2g(x)的最小值为5.
【补偿训练】
  已知函数f(x)=ax2+2x+c(a,c∈N
),满足:
①f(1)=5;②6(1)求a,c的值.
(2)设g(x)=f(x)-2x-3+|x-1|,求g(x)的最小值.
【解析】(1)f(1)=a+2+c=5,f(2)=4a+4+c∈(6,11),
所以c=5-2-a=3-a,
所以4a+4+3-a=3a+7∈(6,11),
所以-又a∈N
,所以a=1,c=2.
(2)因为f(x)=x2+2x+2,
所以g(x)=f(x)-2x-3+|x-1|=x2+2x+2-2x-3+|x-1|=x2+|x-1|-1,
当x≥1时,g(x)=x2+x-2,
此时g(x)在[1,+∞)上是增函数,
所以g(x)min=g(1)=1+1-2=0,
当x<1时,g(x)=x2-x,g(x)在上是减函数,在上是增函数,
所以g(x)min=g=-=-,
又-<0,所以g(x)min=g=-.
1.当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是________.?
【解析】设f(x)=x2+mx+4,则f(x)图象开口向上,对称轴为x=-.
(1)当-≤1时,即m≥-2时,
满足f(2)=4+2m+4≤0,
所以m≤-4,
又m≥-2,所以此时无解.
(2)当-≥2,即m≤-4时,
需满足f(1)=1+m+4≤0,
所以m≤-5,
又m≤-4,所以m≤-5.
(3)当1<-<2,即-4需满足此时无解.
综上所述,m≤-5.
答案:m≤-5
2.(2020·永州高一检测)已知≤a≤1,若函数f(x)=ax2-2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a).
(1)求g(a)的函数解析式.
(2)不要证明,请直接写出函数g(a)的单调区间,并求g(a)的最大值.
【解析】(1)根据题意,f(x)=ax2-2x+1=
a+1-,
由≤a≤1得1≤≤3,
则N(a)=f=1-,
当1≤<2,即当2≤≤3,即≤a≤时,M(a)=f(1)=a-1,
则g(a)=
(2)g(a)在上是减函数,在上是增函数,
且g(a)的图象连续不断;
又g=,g(1)=4,
所以g(a)的最大值是g(1)=4.
【补偿训练】
  1.已知函数f(x)=x2+ax+a2+1(a∈R),设f(x)在[-1,1]上的最大值为g(a),
(1)求g(a)的表达式.
(2)是否存在实数m,n,使得g(a)的定义域为[m,n],值域为[5m,5n]?如果存在,求出m,n的值;如果不存在,请说明理由.
【解析】(1)因为函数f(x)图象的对称轴为x=-,所以当-≤0,即a≥0时,
g(a)=f(x)max=f(1)=a2+a+2;
当->0,即a<0时,
g(a)=f(x)max=f(-1)=a2-a+2.
所以g(a)=
(2)假设存在符合题意的实数m,n,
则由(1)可知,当a∈R时,g(a)∈[2,+∞).
所以若a∈[m,n],有g(a)∈[5m,5n],
则0所以g(a)=a2+a+2,且为增函数.
所以
所以
2.对于区间[a,b]和函数y=f(x),若同时满足:
①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域还是[a,b],则称区间[a,b]为函数f(x)的“不变”区间.
(1)求函数y=x2(x≥0)的所有“不变”区间.
(2)函数y=x2+m(x≥0)是否存在“不变”区间?若存在,求出实数m的取值范围;若不存在,说明理由.
【解析】(1)易知函数y=x2(x≥0)是增函数,
故有解得a=0或1,b=0或1,
又a所以函数y=x2(x≥0)的“不变”区间为[0,1].
(2)易知函数y=x2+m(x≥0)是增函数,
若函数y=x2+m(x≥0)存在“不变”区间,
则有b>a≥0,且
消去m得a2-b2=a-b,
整理得(a-b)(a+b-1)=0.
因为a又由b>a≥0,得1-a>a≥0,所以0≤a<.
所以m=-a2+a
=-+,
所以0≤m<.
综上,当0≤m<时,函数y=x2+m(x≥0)存在“不变”区间.
PAGE课时素养评价二十一 函数的表示方法
(15分钟 30分)
1.已知一次函数的图象过点(1,0)和(0,1),则此一次函数的解析式为
(  )
A.f(x)=-x
B.f(x)=x-1
C.f(x)=x+1
D.f(x)=-x+1
【解析】选D.设f(x)=ax+b(a≠0),
则有
所以a=-1,b=1,所以f(x)=-x+1.
2.已知g(x)=1-2x,f(g(x))=(x≠0),则f=
(  )
A.15
B.1
C.3
D.30
【解析】选A.令g(x)=,得1-2x=,
解得x=.
所以f=f===15.
3.一次函数g(x)满足g(g(x))=9x+8,则g(x)的解析式是
(  )
A.g(x)=9x+8
B.g(x)=3x-2
C.g(x)=-3x-4或g(x)=3x+2
D.g(x)=3x+8
【解析】选C.因为g(x)是一次函数,
所以设g(x)=kx+b(k≠0),
所以g(g(x))=k(kx+b)+b,
又因为g(g(x))=9x+8,所以
解得:或
所以g(x)=3x+2或g(x)=-3x-4.
【光速解题】逐一代入验证是否满足g[g(x)]=9x+8.
4.(2020·南京高一检测)已知f(x)=2x+1,g(x+1)=f(x),则g(x)=__________.?
【解析】依题意,g(x+1)=2x+1=2(x+1)-1,所以g(x)=2x-1.
答案:2x-1
【补偿训练】
  已知f(x+1)=x2,则f(x)=________.?
【解析】由f(x+1)=x2,
得到f(x+1)=(x+1-1)2,
故f(x)=(x-1)2.
答案:(x-1)2
5.已知二次函数f(x)满足f(x+1)-f(x)=2x,f(0)=1.
(1)求f(x)的解析式.
(2)求y=f(x)在[-1,1]上的最大值.
【解析】(1)设f(x)=ax2+bx+c(a≠0),
因为f(x+1)-f(x)=2x,
所以a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,
即解得a=1,b=-1,
又由f(0)=1,得c=1,所以f(x)=x2-x+1.
(2)由(1)知,函数f(x)=x2-x+1的图象开口方向朝上,以x=为对称轴的抛物线,
故在区间[-1,1]上,当x=-1时,函数取最大值f(-1)=3.
【补偿训练】
  设二次函数f(x)满足f(x-2)=f(-x-2),且f(x)的图象与y轴交点的纵坐标为1,被x轴截得的线段长为2,求f(x)的解析式.
【解析】设f(x)=ax2+bx+c(a≠0).
由f(x-2)=f(-x-2)得4a-b=0,①
又因为|x1-x2|==2,
所以b2-4ac=8a2,②
又由已知得c=1.③
由①②③解得b=2,a=,c=1,
所以f(x)=x2+2x+1.
(20分钟 40分)
一、选择题(每小题5分,共20分)
1.已知f=2x+3,则f(6)的值为
(  )
A.15
B.7
C.31
D.17
【解析】选C.令-1=6,则x=14,
则f(6)=2×14+3=31.
2.若f(x)对于任意实数x恒有3f(x)-2f(-x)=5x+1,则f(x)=
(  )
A.x+1
B.x-1
C.2x+1
D.3x+3
【解析】选A.因为3f(x)-2f(-x)=5x+1,
所以3f(-x)-2f(x)=-5x+1,
解得f(x)=x+1.
3.下表表示y是x的函数,则函数的值域是
(  )
x
05≤x<10
10≤x<15
15≤x≤20
y
2
3
4
5
A.[2,5]
B.{2,3,4,5}
 
C.(0,20]
 
D.N
【解析】选B.由表格可知,y的值为2,3,4,5.
故函数的值域为{2,3,4,5}.
4.(多选题)(2020
·宿迁高一检测)已知f(2x-1)=4x2,则下列结论正确的是
(  )
A.f(3)=9
B.f(-3)=4
C.f(x)=x2
D.f(x)=(x+1)2
【解析】选BD.f(2x-1)=(2x-1)2+2(2x-1)+1,故f(x)=x2+2x+1=(x+1)2,故选项C错误,选项D正确;f(3)=16,f(-3)=4,故选项A错误,选项B正确.
二、填空题(每小题5分,共10分)
5.(2020·淮安高一检测)已知f(+2)=x+4,则f(x)的解析式为____,
f=______.?
【解析】令t=+2,则x=(t-2)2且t≥2,
因为f(+2)=x+4,所以f(t)=t2-4,
则f(x)=x2-4(x≥2),f=-.
答案:f(x)=x2-4(x≥2) -
6.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt
+c(a,b,c是常数),如图记录了三次试验的数据.根据该函数模型和试验数据,可以得到最佳加工时间为________分钟.?
【解析】由题意知,函数关系p=at2+bt+c(a,b,c是常数)经过点(3,0.7),(4,0.8),(5,0.5),
所以
解得a=-0.2,b=1.5,c=-2,所以p=-0.2t2+1.5t-2=-0.2(t-3.75)2+0.812
5,
所以得到最佳加工时间为3.75分钟.
答案:3.75
三、解答题
7.(10分)在未实行大规模绿化造林之前,我国是世界上受荒漠化危害最严重的国家之一,如图1表示我国土地沙化总面积在1950-2000年的变化情况,由图1中的相关信息,试将上述有关年份中,我国从1950-1970、1970-1990、1990-2000年的平均土地沙化面积在图2中表示出来.
【解析】由题图1可知:
1950-1970:土地沙化面积增加了3.2(万平方千米),
年平均沙化面积为:
0.16(万平方千米)=16(百平方千米)
1970-1990:年平均沙化面积为:
0.21(万平方千米)=21(百平方千米)
1990-2000:年平均沙化面积为:
0.25(万平方千米)=25(百平方千米)
如图:
PAGE课时素养评价二十 函数的图象
(15分钟 30分)
1.(2020·朝阳高一检测)图中,能表示函数y=f(x)的图象的是
(  )
【解析】选D.根据题意,对于A,B两图,可以找到一个x与两个y对应的情形;对于C图,当x=0时,有两个y值对应;对于D图,每个x都有唯一的y值对应.因此,D图可以表示函数y=f(x).
2.已知函数f(x)=x-,且此函数图象过点(5,4),则实数m的值为
(  )
A.3
B.4
C.5
D.6
【解析】选C.将点(5,4)代入f(x)=x-,得m=5.
3.将反比例函数y=(k为非零常数)的图象向左平移1个单位,再向下平移2个单位,所得的图象过点(-3,1),则k=________.?
【解析】将反比例函数y=(k为非零常数)的图象向左平移1个单位,再向下平移2个单位,平移后的函数为y=-2,根据所得的图象过点(-3,1),则-2=1,所以k=-6.
答案:-6
4.若函数y=f(x)的定义域为{x|-3≤x≤8且x≠5},值域为{y|-1≤y≤2且y≠0},则y=f(x)的图象可能是________(填序号).?
【解析】①中函数的值域为{y|-1≤y<2},不满足条件,③中图象出现了一个x对多个y的情况,不满足函数的定义.只有②符合条件.
答案:②
5.作出下列函数的图象.
(1)y=(-2≤x≤2,且x≠0);
(2)y=x2-2x(x∈[0,3)).
【解析】(1)描点作出图象,如图所示.
(2)因为x∈[0,3),所以这个函数的图象是抛物线y=x2-2x在0≤x<3之间的一段弧,描点作出图象,
如图所示.
(20分钟 40分)
一、选择题(每小题5分,共20分)
1.已知函数y=ax2+b的图象如图所示,则a和b的值分别为
(  )
A.0,-1  B.1,-1  C.1,0  D.-1,1
【解析】选B.由图象可知,当x=1时,y=0;
当x=0时,y=-1,即解得
2.如图所示,函数y=x+的图象是
(  )
【解析】选C.对于y=x+,当x>0时,y=x+1,当x<0时,y=x-1,
即y=故图象为C.
3.函数y=-x2+2x与函数y=1(x∈R)的图象的公共点个数是
(  )
A.0
B.1
C.2
D.3
【解析】选B.在同一坐标系里画出两函数的图象(图略)可知有一个交点.
4.(多选题)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论,其中正确的是
(  )
A.b2>4ac
B.2a-b=1
C.a-b+c=0
D.5a【解析】选AD.因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,A正确.对称轴为x=-1,-=-1,2a-b=0,B错误.结合图象,当x=-1时,y>0,即a-b+c>0,C错误.由对称轴为x=-=-1知,b=2a.又函数图象开口向下,所以a<0,所以5a<2a,即5a二、填空题(每小题5分,共10分)
5.函数y=-3x2+bx+c的图象是由函数y=-3x2+6x+1的图象向上平移3个单位长度,再向左平移2个单位长度得到的,则b=________,c=________.?
【解析】y=-3x2+6x+1=-3(x-1)2+4向上平移3个单位,得y=-3(x-1)2+7,再向左平移2个单位,得y=-3(x-1+2)2+7=-3x2-6x+4=-3x2+bx+c,比较系数得b=-6,c=4.
答案:-6 4
【补偿训练】
  如图所示某购物中心食品柜在4月份的营业情况统计图象,根据图象回答下列问题:
(1)在这个月中,日最低营业额是在4月________日,达到________万元.?
(2)这个月中最高营业额是在4月________日,达到________万元.?
【解析】(1)由图象可知当日期在9日时,日营业额最小,此时为2万元.
(2)由图象可知当日期在21日时,日营业额最大,此时为6万元.
答案:(1)9 2 (2)21 6
6.已知二次函数f(x)=x2+x+a(a>0),若f(m)<0,则f(m+1)与0的大小关系是________.?
【解析】因为二次函数f(x)=x2+x+a(a>0)的对称轴是x=-,且图象与y轴正半轴相交,所以由图象可知f(x)<0的解集的区间长度小于1,故若f(m)<0,则必有f(m+1)>0.
答案:f(m+1)>0
三、解答题
7.(10分)函数y=f(x)的图象如图所示.
(1)比较f,f,f的大小;
(2)若-1【解析】(1)根据函数的图象,容易发现,f(2)根据函数的图象,容易发现若-1f.
PAGE课时素养评价十九 函数的概念(二)
(15分钟 30分)
1.与函数y=2x2+1不是同一个函数的是
(  )
A.y=|x2|+|x2+1|
B.y=
C.y=|2x2+1|
D.y=
【解析】选D.函数y=2x2+1的定义域为R,值域为[1,+∞),选项A中的函数y=|x2|+|x2+1|=x2+x2+1=2x2+1,它的定义域为R,值域为[1,+∞),和已知函数为同一个函数;
选项B中的函数即y==2x2+1,它的定义域为R,值域为[1,+∞),和已知函数为同一个函数;
选项C中的函数y=|2x2+1|=2x2+1,它的定义域为R,值域为[1,+∞),和已知函数为同一个函数;
选项D中的函数的定义域为{x|x≠-1},故它和已知函数不是同一个函数.
2.(2020·哈尔滨高一检测)下列函数中,表示同一个函数的是
(  )
A.y=x2与y=()4
B.y=x2与y=t2
C.y=与y=
D.y=·与y=
【解析】选B.A.y=x2的定义域为R,y=()4的定义域为[0,+∞),定义域不同,不是同一个函数;
B.y=x2与y=t2显然是同一个函数;
C.y=的定义域为{x|x≠0},y=的定义域为R,定义域不同,不是同一个函数;
D.y=·的定义域为[1,+∞),y=的定义域为(-∞,-1]∪
[1,+∞),定义域不同,不是同一个函数.
3.(2020·杭州高一检测)已知函数f(x)的定义域为(-1,1),则函数g(x)
=f+f(x-2)的定义域为
(  )
A.(0,2)
B.(1,2)
C.(2,3)
D.(-1,1)
【解析】选B.函数f(x)的定义域为(-1,1),则对于函数g(x)=f+f(x-2),
应有解得1故g(x)的定义域为(1,2).
4.(2020·宜春高一检测)已知函数f(x)的定义域为A={1,2,3,4},值域为B={7,8,9},且对任意的x【解析】如图,满足条件的函数共有3个.
答案:3
5.(2020·同仁高一检测)已知f(x)=(x∈R,x≠-2),g(x)=x2+1(x∈R).
(1)求f(2),g(2)的值.
(2)求f(g(3))的值.
(3)作出f(x),g(x)的图象,并求函数的值域.
【解析】(1)f(2)==,g(2)=22+1=5.
(2)f(g(3))=f(32+1)=f(10)==.
(3)作出图象如图,
则f(x)的值域为(-∞,0)∪(0,+∞),g(x)的值域为[1,+∞).
【补偿训练】
  已知f(x)=(x∈R,x≠2),g(x)=x+4(x∈R).
(1)求f(1),g(1)的值.
(2)求f(g(x)).
【解析】(1)f(1)==1,g(1)=1+4=5.
(2)f(g(x))=f(x+4)==
=-(x∈R,且x≠-2).
(20分钟 40分)
一、选择题(每小题5分,共20分)
1.若f(x)=2x-1,则f(f(x))=
(  )
A.2x-1
B.4x-2
C.4x-3
D.2x-3
【解析】选C.因为f(x)=2x-1,
所以f(f(x))=2f(x)-1=2(2x-1)-1=4x-3.
2.若函数y=f(x)的定义域为{x|0A.(0,1)
B.(1,2)
C.∪
D.(1,3)
【解析】选C.函数y=f(x)的定义域为{x|0则对于函数y=f(|2x-3|),
应有0<|2x-3|<1,即-1<2x-3<1,
且2x-3≠0,解得13.函数f(x)对于任意实数x均满足f(x+2)=-f(x),若f(1)=-5,则f(f(9))=
(  )
A.2
B.5
C.-5
D.-
【解析】选B.因为f(x+2)=-f(x),
所以f(x+4)=f(x),
所以f(f(9))=f(f(1))=f(-5),
因为f(x)=-f(x+2),
所以f(-5)=-f(-3)=f(-1)=-f(1)=5.
4.(多选题)(2020·济南高一检测)下列各组函数是同一个函数的是
(  )
A.f(x)=x2-2x-1与g(s)=s2-2s-1
B.f(x)=与g(x)=x
C.f(x)=与g(x)=
D.f(x)=x与g(x)=
【解析】选AC.对于A,f(x)=x2-2x-1的定义域为R,g(s)=s2-2s-1的定义域为R,定义域相同,对应关系也相同,是同一个函数;
对于B,f(x)==-x的定义域为{x|x≤0},g(x)=x的定义域为{x|x≤0},对应关系不同,不是同一个函数;对于C,f(x)==1的定义域为{x|x≠0},
g(x)==1的定义域为{x|x≠0},定义域相同,对应关系也相同,是同一个函数;
对于D,f(x)=x的定义域为R,g(x)==|x|的定义域为R,对应关系不同,不是同一个函数.
二、填空题(每小题5分,共10分)
5.已知y=f(x+1)的定义域是[-2,3],则函数y=f(x)的定义域为________,
y=f(2x)+的定义域为________.?
【解析】因为y=f(x+1)的定义域是[-2,3],
所以-2≤x≤3,则-1≤x+1≤4,
即函数f(x)的定义域为[-1,4].
由得
得-答案:[-1,4] 
6.一个变量y随另一变量x变化.对应关系是“2倍加1”:
(1)填表.
x

1
2
3
4

y


(2)根据表格填空:x=2α时,y=________.?
(3)写出解析式:y=________.?
【解析】因为变量y随另一变量x变化,对应关系是“2倍加1”:
(1)完整的表格如表所示:
x

1
2
3
4

y

3
5
7
9

(2)根据表格填空:x=2α时,y=2×2α+1=4α+1.
(3)函数的解析式:y=2x+1.
答案:(1)3 5 7 9 (2)4α+1 (3)2x+1
三、解答题
7.(10分)已知函数f(x)=+的定义域为集合A,B={x|x(1)求集合A;
(2)若A?B,求a的取值范围;
(3)若全集U={x|x≤4},a=-1,求UA及A∩(UB).
【解析】(1)使有意义的实数x的集合是{x|x≤3},
使有意义的实数x的集合是{x|x>-2}.
所以,这个函数的定义域是{x|x≤3}∩{x|x>-2}={x|-2即A={x|-2(2)因为A={x|-23.
即a的取值范围为(3,+∞).
(3)因为U={x|x≤4},A={x|-2所以UA=(-∞,-2]∪(3,4].
因为a=-1,所以B={x|x<-1},
所以UB=[-1,4],
所以A∩(UB)=[-1,3].
PAGE课时素养评价十八 函数的概念(一)
(15分钟 30分)
1.已知集合A={x|0≤x≤8},集合B={y|0≤y≤4},则下列对应关系中,不能看作是从A到B的函数关系的是
(  )
A.f:x→y=x
B.f:x→y=x
C.f:x→y=x
D.f:x→y=x
【解析】选D.对于A中的任意一个元素,在对应关系f:x→y=x;f:x→y=x;
f:x→y=x下,在B中都有唯一的元素与之对应,故能构成函数关系.对于A中的元素8,在对应关系f:x→y=x下,在B中没有元素与之对应,故不能构成函数关系.
2.(2020·朝阳高一检测)函数f(x)=的定义域为
(  )
A.{x|x≤2或x≥3}
B.{x|x≤-3或x≥-2}
C.{x|2≤x≤3}
D.{x|-3≤x≤-2}
【解析】选A.由x2-5x+6≥0,解得x≤2或x≥3,所以函数f(x)=的定义域为{x|x≤2或x≥3}.
3.函数f(x)=的定义域为
(  )
A.[2,+∞)
B.(2,+∞)
C.(2,3)∪(3,+∞)
D.[2,3)∪(3,+∞)
【解析】选C.函数f(x)=中,解得x>2且x≠3;
所以f(x)的定义域为(2,3)∪(3,+∞).
4.已知集合M={x,y,z},N={-1,1},则从M到N的函数中,满足f(x)=1的有______个.?
【解析】由题意满足f(x)=1的有
共4个.
答案:4
5.求下列函数的值域.
(1)f(x)=.
(2)y=2x2+4x-3.
【解析】(1)函数的定义域为R,
f(x)==≤=2,
且f(x)>0,所以其值域为(0,2].
(2)因为y=2x2+4x-3=2(x+1)2-5≥-5,
故函数y=2x2+4x-3的值域为{y|y≥-5}.
(20分钟 40分)
一、选择题(每小题5分,共20分)
1.若两个函数的对应关系相同,值域也相同,但定义域不同,则称这两个函数为同族函数.那么与函数y=x2,x∈{-1,0,1,2}为同族函数的有
(  )
A.5个
B.6个
C.7个
D.8个
【解析】选D.由题意知同族函数是只有定义域不同的函数,函数解析式为y=x2,值域为{0,1,4}时,
定义域中,0是肯定有的,正负1,至少含一个,正负2,至少含一个.它的定义域可以是{0,1,2},{0,1,-2},{0,-1,2},{0,-1,-2},{0,1,-2,2},
{0,-1,-2,2},{0,1,-1,-2},{0,1,-1,2,-2},共有8种不同的情况.
2.(2020·启东高一检测)函数f(x)=的定义域为
(  )
A.
B.
C.(-∞,-2)∪
D.(-∞,-2)∪
【解析】选C.由
解得x≤且x≠-2.
所以函数f(x)=的定义域为(-∞,-2)∪.
3.已知f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=
(  )
A.p+q
B.3p+2q
C.2p+3q
D.p3+q2
【解析】选B.因为f(ab)=f(a)+f(b),
所以f(9)=f(3)+f(3)=2q,
f(8)=f(2)+f(2)+f(2)=3p,
所以f(72)=f(8×9)=f(8)+f(9)=3p+2q.
4.(多选题)已知集合M={-1,1,2,4},N={1,2,4,16},给出下列四个对应关系,请由函数定义判断,其中能构成从M到N的函数的是
(  )
A.y=
B.y=x+1
C.y=2|x|
D.y=x2
【解析】选CD.在A中,当x=-1时,y=-1?N,故A错误;
在B中,当x=-1时,y=-1+1=0?N,故B错误;
在C中,任取x∈M,总有y=2|x|∈N,故C正确;
在D中,任取x∈M,总有y=x2∈N,故D正确.
二、填空题(每小题5分,共10分)
5.设函数f(x)=x0+,则其定义域为________.?
【解析】函数f(x)=x0+,
则解得-3≤x≤3且x≠0.
所以函数f(x)的定义域是[-3,0)∪(0,3].
答案:[-3,0)∪(0,3]
6.函数y=的定义域为R,则a∈________.?
【解析】因为任意x∈R,根式恒有意义,
所以ax2+ax+1≥0的解集为R,
①a=0时,1≥0恒成立;
②a≠0时,
解得0综上得,a∈{a|0≤a≤4}.
答案:{a|0≤a≤4}
三、解答题
7.(10分)已知集合A={1,2,3,k},B={4,7,a4,a2+3a},a∈N
,k∈N
,x∈A,y∈B,f:x→y=3x+1是从定义域A到值域B的一个函数,求a,k,A,B.
【解析】根据对应关系f,有1→4;2→7;3→10;k→3k+1.
若a4=10,则a?N
,不符合题意,舍去;
若a2+3a=10,则a=2(a=-5不符合题意,舍去).
故3k+1=a4=16,得k=5.
综上a=2,k=5,集合A={1,2,3,5},
B={4,7,10,16}.
PAGE