3 简单的轴对称图形
第五章 生活中的轴对称
第1课时 等腰三角形的性质
学习目标
1.理解并掌握等腰三角形的性质;(重点)
2.探索并掌握等腰三角形的轴对称性及其相关性质,
能初步运用其解决有关问题.(难点).
观察下列各种图形,判断是不是轴对称图形,
能找出对称轴吗?
复习巩固
探究:如图所示,把一张长方形的纸按照图中虚线对折并减去
阴影部分,再把它展开得到的△ABC有什么特点?
情境导入
情境导入
观察下列图片,它们有什么共同的特征?
等腰三角形
等腰三角形的性质
如图,在△ABC中,AB=AC,则三角形为等腰三角形.
它的各部分名称分别是什么?
A
B
C
(1)相等的两条边都叫腰;
腰
腰
底边
(2)另一边叫底边;
顶角
底角
底角
(3)两腰的夹角∠A叫顶角;
(4)腰与底边夹角∠B、∠C叫底角.
剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?
互动探究
A
B
C
AB=AC
等腰三角形
折一折:△ABC 是轴对称图形吗?它的对称轴是什么?
A
C
D
B
折痕所在的直线是它的对称轴.
等腰三角形是轴对称图形.
找一找:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.
重合的线段
重合的角
A
C
B
D
AB与AC
BD与CD
AD与AD
∠B 与∠C
∠BAD 与∠CAD
∠ADB 与∠ADC
猜一猜: 由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想.
(1)等腰三角形是轴对称图形.
(2)∠B =∠C.
(3)∠BAD=∠CAD,AD为顶角的平分线.
(4)∠ADB=∠ADC=90°,AD为底边上的高.
(5)BD=CD,AD为底边上的中线.
A
B
C
D
现象
A
B
C
D
解:在ΔABC中,∵AD是角平分线,
∴∠BAD=∠CAD.
在ΔABD和ΔACD中,
∵AB=AC,∠BAD=∠CAD,AD=AD,
∴ΔABD≌ΔACD.
∴BD=CD, ∠ADB=∠ADC=90?.
∴AD是ΔABC的角平分线、底边上的中线、底边上的高.
三线合一吗?
等腰三角形是轴对称图形.
等腰三角形的顶角平分线、底边上的高和底边上的中线互相重合(简称“三线合一”).
归纳总结
等腰三角形的两个底角相等.
画出任意一个等腰三角形的底角平分线、这个底角所对的腰上的中线和高,看看它们是否重合?
1.等腰三角形的顶角一定是锐角.
2.等腰三角形的底角可能是锐角或者直角、
钝角都可以.
3.钝角三角形不可能是等腰三角形.
4.等腰三角形的顶角平分线一定垂直底边.
5.等腰三角形的角平分线、中线和高互相重合.
6.等腰三角形底边上的中线一定平分顶角.
(X)
(X)
(X)
(X)
(√)
(√)
1.按下面的步骤做一做:
(1)将长方形纸片对折
(2)然后沿对角线折叠,再沿折痕剪开.
你有哪些办法可以得到一个等腰三角形?与同伴交流.
议一议
2.你能尝试用圆规吗?
例1 等腰三角形的一个内角是50°,则这个三角
形的底角的大小是( )
A.65°或50° B.80°或40°
C.65°或80° D.50°或80°
典例精析
解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.
A
解 ∵AB=AC, BD=BC=AD,(已知)
∴∠ABC=∠C=∠BDC,
∠A=∠ABD.(等边对等角)
设∠A=x°,∵∠A+∠ABD+∠ADB=180°,
又∵∠BDC+∠ADB=180°,
∴∠BDC=∠A+∠ABD=2x°.
∵∠ABC=∠C=∠BDC=2x°,
∴x+2x+2x=180.(三角形内角和等于180°)
解得 x=36 .∴∠A=36°,∠C=72°.
例2 如图,在ΔABC中,AB=AC , 点D在AC上,且
BD=BC=AD , 求∠A和∠C的度数.
C
D
B
A
如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
解:∵AB=AD=DC,
∴ ∠B= ∠ADB,∠C= ∠DAC.
设 ∠C=x,则 ∠DAC=x.
在△ABD中, 根据三角形内角和定理,得
∠B+∠ADB+26°=180°,解得∠B= ∠ADB=77°.
在△ABC中, 根据三角形内角和定理,得
26°+x+77°+x=180°,解得∠C=x= 38.5°.
针对训练:
例3 已知点D、E在△ABC的边BC上,AB=AC.
(1)如图①,若AD=AE,求证:BD=CE;
(2)如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.
典例精析
图②
图①
证明:(1)如图①,过A作
AG⊥BC于G.
∵AB=AC,AD=AE,
∴BG=CG,DG=EG,
∴BG-DG=CG-EG,
∴BD=CE;
(2)∵BD=CE,F为DE的中点,
∴BD+DF=CE+EF,
∴BF=CF.
∵AB=AC,∴AF⊥BC.
图②
图①
G
方法总结:在等腰三角形有关计算或证明中,有时需要添加辅助线,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.
1.填空:
(1)等腰直角三角形的每一个锐角的度数是 ;
(2)如果等腰三角形的底角等于40°,那么它的
顶角的度数是_________ ;
(3)如果等腰三角形有一个内角等于80°,那么这
个三角形的最小内角等于____________ ;
20°或50°
当堂跟踪练习
100°
45°
(4)△ ABC中,AB=AC,∠A= 36?,则∠B= ______,
∠C= ____;
(5)△ ABC中,AB=AC,∠B= 36?,则∠A= ______,
∠C= ____.
72°
72°
108°
36°
方法总结:等边对等角!
2.如图,是由大小不等的等边三角形组成的图案,
请找出它的对称轴.
解:∵OA=AB,
∴∠ABO=∠O=15°,∴∠BAO=150°,
∴∠BAC=180°-∠BAO=30°.
∵AB=BC,
∴∠ACB=∠BAC=30°,
∴∠CBO=135°,∴∠CBD=180°-∠CBO=45°.
∵BC=CD,∴∠D=∠CBD=45°,∴∠OCD=120°,
∴∠1=180°-∠OCD=60°.
3.如图,∠AOB=15°,且OA=AB=BC=CD.求∠1的度数.
⌒
15°
1
C
D
B
O
A
⌒
4.如图,在ΔABC中,AB=AC,∠BAC=120°,点D, E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.
C
E
D
B
A
解 :∵AB=AC,∴∠B=∠C,
∴∠B=∠C=(180°-120°)÷2=30°.
又∵BD=AD,∴∠BAD=∠B=30°.
同理,∠CAE=∠C=30°.
∴∠DAE=∠BAC-∠BAD
-∠CAE=120°-30°-30°
=60°.
5.A、B是4×4网格中的格点,网格中的每个小正方形的边长为1,请在图中标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.
A
B
分别以A、B、C为顶角
顶点来分类讨论!
8个
这样分类就不会漏啦!
C1
C2
C3
C4
C5
C6
C7
C8
拓展提升:
等腰三角形的性质
课堂小结
等腰三角形的两个底角相等(等边对等角)
等腰三角形的顶角平分线、底边上的中线和底边上的高重合(三线合一)
1.等腰三角形的性质:
等腰三角形是轴对称图形;等腰三角形顶角的平分线、
底边上的中线、底边上的高重合(也称“三线合一”),它们所在
的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.
2.运用等腰三角性质解题的一般思想方法:
方程思想、整体思想和转化思想.
板书设计
本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
教学反思