中小学教育资源及组卷应用平台
北京市2011-2020年高考专项分类汇编之7—
电磁感应
(1)法拉第电磁感应定律
1. 2013年北京卷17. 如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为El;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比El∶E2分别为( C )
A.c→a,2∶1 B.a→c,2∶1
C.a→c,1∶2 D.c→a,1∶2
【 解析】据右手定则可直接判断出感应电流的方向为a→c,由导体棒切割磁感线产生的感应电动势的表达式可知若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为原来的2倍,本题选C。
2. 2012年理综北京卷19. 物理课上,老师做了一个奇妙的“跳环实验”。如图,她把一个带铁芯的线圈L、开关S和电源用导终连接起来后.将一金属套环置于线圈L上,且使铁芯穿过套环。闭合开关S的瞬间,套环立刻跳起。某同学另找来器材再探究此实验。他连接好电路,经重复试验,线圈上的套环均末动。对比老师演示的实验,下列四个选项中.导致套环未动的原因可能是( D )
A.线圈接在了直流电源上.
B.电源电压过高.
C.所选线圈的匝数过多,
D.所用套环的材料与老师的不同
解析:在开关闭合的瞬间,线圈中的电流变大,磁场变强,穿过金属套环的磁通量变大,在金属套环内产生感应电流。感应磁场必然阻碍原磁场的增大,所以金属套环会受到线圈的斥力而跳起。
在实验时电源一般采用直流电源,电压不能太大(以不烧导线和电源的条件下电压大现象明显),所选线圈的匝数越多,现象也越明显。如果该学生所用套环的材料为非金属,则不会观察到“跳环实验”。答案D。
(2)感应电流的方向
3.2016年北京卷16.如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。磁感应强度B随时间均匀增大。两圆坏半径之比为2:1,圆环中产生的感应电动势分别为Ea和Eb,不考虑两圆环间的相互影响。下列说法正确的是
A. Ea:Eb=4:1,感应电流均沿逆时针方向
B. Ea:Eb=4:1,感应电流均沿顺时针方向
C. Ea:Eb=2:1,感应电流均沿逆时针方向
D. Ea:Eb=2:1,感应电流均沿顺时针方向
【答案】B
【解析】根据法拉第电磁感应定律E=n= nS,因为B随时间均匀增大,所以 k=为定值。
===,再根据楞次定律,磁场方向垂直纸面向外且增大,所以感应电流方向为顺时针。故B正确。
(3)电磁感应中的电路问题
4.2020年北京卷18.(9分)如图甲所示,N=200匝的线圈(图中只画了2匝),电阻r=2Ω,其两端与一个R=48Ω的电阻相连,线圈内有指向纸内方向的磁场。线圈中的磁通量按图乙所示规律变化。
(1)判断通过电阻R的电流方向;
(2)求线圈产生的感应电动势E;
(3)求电阻R两端的电压U。
答案∶(1)a→R→b(2)10V (3)9.6V
解析∶(1)根据图像可知,线圈中垂直于纸面向里的磁场增大,为了阻碍线圈中磁通量的增大,根据楞次定律可知线圈中感应电流产生的磁场垂直于纸面向外,根据安培定则可知线圈中的感应电流为逆时针方向,所通过电阻的电流方向为a→R→b。
(2)根据法拉第电磁感应定律
(3)电阻两端的电压为路端电压,根据分压规律可知
5.2019年北京卷22.(16分)如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:
(1)感应电动势的大小E;
(2)拉力做功的功率P;
(3)ab边产生的焦耳热Q。
答案:(1) ;(2) ;(3)
解析:(1)从ad边刚进入磁场到bc边刚要进入的过程中,只有ad边切割磁感线,所以产生的感应电动势为:;
(2)线框进入过程中线框中的电流为:
ad边安培力为:
由于线框匀速运动,所以有拉力与安培力大小相等,方向相反,即
所以拉力的功率为:
联立以上各式解得:;
(3) 线框进入过程中线框中的电流为:
进入所用的时间为:
ab边的电阻为:
焦耳热为:
联立解得:。
6. 2015年理综北京卷22.(16分)如图所示,足够长的平行光滑金属导轨水平放置,宽度L=0.4m,一端连接R=1Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=1T。导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。导轨和导体棒的电阻均可忽略不计。在平行于导轨的拉力F作用下,导体棒沿导轨向右匀速运动,速度v=5m/s。求:
⑴感应电动势E和感应电流I;
⑵在0.1s时间内,拉力的冲量IF的大小;
⑶若将MN换为电阻r=1Ω的导体棒,其它条件不变,求导体棒两端的电压U。
解:根据动生电动势公式得E=BLv = 1T×0.4m×5m /s =2V
故感应电流
(2)金属棒在匀速运动过程中,所受的安培力大小为F安= BIL =0.8N,
因为是匀速直线运动,所以导体棒所受拉力F = F安 = 0.8N
所以拉力的冲量 IF =F t=0.8 N×0.1 s=0.08 N?s
(3)导体棒两端电压
7.海淀区2020年春阶段性测试18.如图19所示,MN、PQ为足够长的光滑平行金属导轨,两导轨的间距L=0.50m,导轨平面与水平面间夹角θ=37°,N、Q间连接一阻值R=0.40Ω的定值电阻,在导轨所在空间内有垂直于导轨平面向上的匀强磁场,磁感应强度B=0.20T。将一根金属棒垂直于MN、PQ方向置于导轨的ab位置,金属棒与导轨接触的两点间的电阻r=0.10Ω,导轨的电阻可忽略不计。现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好。当金属棒滑行至cd处时,其速度大小v=4.0m/s,已知重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80。求:
(1)金属棒沿导轨开始下滑时的加速度大小a;
(2)金属棒滑至cd处时电阻R两端的电压大小U;
(3)金属棒滑至cd处时电阻R的电功率大小P。
解:(1)金属棒沿导轨开始下滑时受重力和轨道对其的支持力,设其质量为m,根据牛顿第二定律,沿轨道斜面方向有 mgsinθ=ma
解得 a=gsinθ=6.0m/s2
(2)金属棒达到cd处时的感应电动势E=BLv=0.40V
根据闭合电路欧姆定律可知,电阻R两端的电压U==0.32V
(3)电阻R上的电功率P=U2/R=0.256W
8.通州区2020年一模17.如图1所示,一个匝数n=10的圆形导体线圈,面积S1=0.4 m2 ,电阻r=1 Ω。在线圈中存在垂直线圈平面向里的匀强磁场区域,磁感应强度B随时间t变化的关系如图2所示。有一个R=4 Ω的电阻,将其两端与图1中的圆形线圈相连接,求:
(1)在0~0.2s时间内产生的感应电动势E的大小;
(2)在0~0.2s时间内通过电阻R的电荷量q的大小;
(3)线圈电阻r消耗的功率Pr的大小。
解:(1)由图象可知0-0.2 s内磁感应强度B的变化率为:T/s
平均感应电动势为:V=4V
(2)电路中的平均感应电流为:,又,且
所以C=0.16C
(3)由于电流是恒定的,线圈电阻r消耗的功率为W
(4)自感现象
9.2017年北京卷19.图1和图2是教材中演示自感现象的两个电路图,L1和L2为电感线圈。实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同。下列说法正确的是
A.图1中,A1与L1的电阻值相同
B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流
C.图2中,变阻器R与L2的电阻值相同
D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等
答:C
解析:断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗,是由于线圈L1的自感,维持原有的电流经过了灯A1,而等A1突然闪亮,说明闭合S1,电路稳定后,A1中电流小于L1中电流,L1的电阻小于了等A1的电阻,故选项A、B错误;闭合开关S2,由于线圈L2的自感,灯A2逐渐变亮,故选项D错误;最终A2与A3的亮度相同,说明稳定后两支路的电流相同,因此变阻器R与L2的电阻值相同,故选项C正确。
10.2011年理综北京卷19.某同学为了验证断电自感现象,自己找来带铁心的线圈L,小灯泡A ,开关S和电池组E,用导线将它们连接成如图所示的电路。检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡未闪亮的原因是
A.电源的内阻较大 B.小灯泡电阻偏大
C.线圈电阻偏大 D.线圈的自感系数较大
答:C
【解析】断电的自感现象,断电时电感线圈与小灯泡组成回路,电感线圈储存磁能转化为电能,电感线圈相当于电源,其自感电动势,与原电源无关,A错误;小灯泡电阻偏大,分得的电压大,可能看到显著的延时熄灭现象,B错误;线圈电阻偏大,相当于电源内阻大,使小灯泡分得的电压小,可看到不显著的延时熄灭现象,C正确;线圈的自感系数较大时,自感电动势较大,可能看到显著的延时熄灭现象,D错误。
(5)电磁感应规律的综合应用
11.通州区2016届一模6.如图所示,固定于水平面的U形导线框处于竖直向下的匀强磁场中(磁场足够大),磁场的磁感应强度为B,点a、b是U形导线框上的两个端点。水平向右恒力F垂直作用在金属棒MN上,使金属棒MN以速度υ向右做匀速运动。金属棒MN长度为L,恰好等于平行轨道间距,且始终与导线框接触良好,不计摩擦阻力,金属棒MN的电阻为R。已知导线ab的横截面积为S、单位体积内自由电子数为n,电子电量为e,电子定向移动的平均速率为υ。导线ab的电阻为R,忽略其余导线框的电阻。则,在△t时间内
A.导线ab中自由电子从a向b移动
B.金属棒MN中产生的焦耳热Q = FL
C.导线ab受到的安培力大小F安 = nSLeυB
D.通过导线ab横截面的电荷量为
【答案】C
【解析】由右手定则可判断出,MN中的感应电流方向为由N到M,故电流由a到b,则自由电子的是由b向a移动,选项A错误;外力做的功为W = Fυ△t,故整个电路产生的焦耳热为Q总 = W,则金属棒MN中产生的焦耳热为0.5Q总,选项B错误;导线ab受到的安培力大小F安 = BIL = nSLeυB,选项C正确;通过导线ab横截面的电荷量为q = I△t = △t,选项D错误。
12. 2014年理综北京卷24.(20分)
导体切割磁感线的运动可以从宏观和微观两个角度来认识。如图所示,固定于水平面的U型导线框处于竖直向下的匀强磁场中,金属直导线MN在于其垂直的水平恒力F作用下,在导线框上以速度v做匀速运动,速度v与恒力F的方向相同:导线MN始终与导线框形成闭合电路。已知导线MN电阻为R,其长度l恰好等于平行轨道间距,磁场的磁感应强度为B。忽略摩擦阻力和导线框的电阻。
(1) 通过公式推导验证:在△t时间内,F对导线MN所做的功W等于电路获得的电能W' ,也等于导线MN中产生的焦耳热Q;
(2)若导线MN的质量m=8.0g,长度L=0.10m,感应电流I=1.0A,假设一个原子贡献一个自由电子,计算导线MN中电子沿导线长度方向定向移动的平均速率ve(下表中列出一些你可能会用到的数据);
阿伏伽德罗常数NA
元电荷
导线MN的摩尔质量
(3)经典物理学认为,金属的电阻源于定向运动的自由电子和金属离子(即金属原子失去电子后的剩余部分)的碰撞。展开你想象的翅膀,给出一个合理的自由电子的运动模型;在此基础上,求出导线MN中金属离子对一个自由电子沿导线长度方向的平均作用力f的表达式。
【答案】(1)见解析 (2) (3)
【解析】(1)动生电动势: ①
电流: ②
安培力: ③
力做功: ④
电能: ⑤
焦耳热: ⑥
由④⑤⑥可知,
(2)总电子数:
单位体积内的电子数:
⑦
(3)从微观角度看,导线中的自由电子与金属离子发生碰撞,可以看做非完全弹性碰撞,自由电子损失的动能转化为焦耳热。
从整体角度看,可视为金属离子对自由电子整体运动的平均阻力导致自由电子动能的损失,即
⑧
从宏观角度看,导线MN速度不变,力F做功使外界能量完全转化为焦耳热。
时间内,力F做功 ⑨
代入⑦,
代入②③,得
13.2020年北京卷20.某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小随速度的变化曲线。
(1)求列车速度从降至经过的时间t及行进的距离x。
(2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为,不计金属棒及导轨的电阻。沿导轨向右运动的过程,对应列车的电气制动过程,可假设棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
(3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从减到的过程中,在哪个速度附近所需机械制动最强?
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
答案∶(1) ,;
(2) 列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数,论证过程见解析。画出的图线如下图所示:
(3)
解析∶(1)由图1可知,列车匀减速直线运动的速度从降至的过程中,加速度大小为0.7m/s2,由加速度的定义式
得
由速度位移公式
得
(2)由MN沿导轨向右运动切割磁场线产生感应电动势
回路中感应电流
MN受到的安培力
加速度为
结合上面几式得,
由于B、L、R、m均为常数,所以棒的加速度与棒的速度成正比,即。
又因为列车的电气制动过程,可假设MN棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比,即 ,所以列车电气制动产生的加速度与列车的速度成正比,图线为过P点的正比例函数。画出的图线如右图所示。
(3)由分析可知,列车的加速度由三个方面提供,即电气制动产生的加速度、机械制动产生的加速度以及空气阻力产生的加速度,即
由(2)的结论分析可知,在列车速度从100m/s降至3m/s的过程中,列车速度为3m/s时,电气制动产生的加速度最小,
由题目已知条件可知,列车受到的空气阻力随车速减小而减小,故列车速度为3m/s时,空气阻力最小,因此此时空气阻力产生的加速度也最小;
而由图像可知:此时列车设定的加速度又最大,
综合以上三个因素可知:列车速度为3m/s附近所需机械制动最强。
_21?????????è?????(www.21cnjy.com)_