八年级数学综合测试
一.选择题(共12小题,满分36分,每小题3分)
1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )
A.
B.
C.
D.
2.下列条件中,不能判定两个直角三角形全等的是( )
A.一个锐角和斜边对应相等
B.两条直角边对应相等
C.两个锐角对应相等
D.斜边和一条直角边对应相等
3.分式有意义的条件是( )
A.x≠﹣2或x≠1
B.x≠﹣2且x≠1
C.x≠﹣2
D.x≠1
4.如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=24°,则图2中∠AEF的度数为( )
A.120°
B.108°
C.112°
D.114°
5.下列语句中是命题的是( )
A.作线段AB=CD
B.两直线平行
C.对顶角相等
D.连接AB
6.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是( )
A.△ABD≌△ECD
B.连接BE,四边形ABEC为平行四边形
C.DA=DE
D.CE=CA
7.数据4,3,5,3,6,3,4的众数和中位数是( )
A.3,4
B.3,5
C.4,3
D.4,5
8.若方程的根为正数,则k的取值范围是( )
A.k<2
B.﹣3<k<2
C.k≠﹣3
D.k<2且
k≠﹣3
9.如图,正方形ABCD的一边AB为边向下作等边三角形ABE,则∠CDE的度数是( )
A.30°
B.25°
C.20°
D.15°
10.如图,在△ABC中,BD平分∠ABC,AF⊥BD于点E,交BC于点F,点G是AC的中点,若BC=10,AB=7,则EG的长为( )
A.1.5
B.2
C.2.5
D.3.5
11.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则下列说法正确的是( )
A.若四边形EFGH是平行四边形,则AC与BD相等
B.若四边形EFGH是正方形,则AC与BD互相垂直且相等
C.若AC=BD,则四边形EFGH是矩形
D.若AC⊥BD,则四边形EFGH是菱形
12.如图,已知∠B=30°,线段BC=2,点E,F分别是线段BC和射线BA上的动点,则CF+EF的最小值是( )
A.1
B.2
C.
D.
二.填空题(共6小题,满分18分,每小题3分)
13.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5.则△BEC的周长是
.
14.某校举行广播体操比赛,评分项目包括服装统一度、进退场秩序、动作规范整齐度这三项,每项满分10分,总成绩按以上三项得分2:3:5的比例计算,总成绩满分10分.已知八(1)班在比赛中三项得分依次为10分、8分、9分,则八(1)班这次比赛的总成绩为
分.
15.如图,四边形ABDE是长方形,AC⊥DC于点C,交BD于点F,AE=AC,∠ADE=62°,则∠BAF的度数为
.
16.临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m,方差分别是:=0.075,=0.04,这两名同学成绩比较稳定的是
(填“甲”或“乙”).
17.将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=
°.
18.如图,在Rt△ABC中,∠ACB=90°,CA=CB=2,D是△ABC所在平面内一点,以A,B,C,D为顶点的四边形是平行四边形,则BD的长为
.
三.解答题(共6小题,满分66分)
19.(15分)计算:
20.(8分)(1)若多项式(x2﹣ax+3)(x2+b)的展开式中不含x3和x2项,求a+b的值.
(2)先化简:÷?,再从a=﹣4,4,﹣2,3中选择一个你喜欢的数作为a的值代入求原代数式的值.
21.(10分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
平均分(分)
中位数(分)
众数(分)
方差(分2)
初中部
a
85
b
s初中2
高中部
85
c
100
160
(1)根据图示计算出a、b、c的值;
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.
22.(10分)如图,过?ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.
(1)求证:△PBE≌△QDE;
(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.
23.(10分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.
24.(13分)如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.
(1)求证:BP=CQ;
(2)若BP=PC,求AN的长;
(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.
参考答案
一.选择题(共12小题,满分36分,每小题3分)
1.解:A、不是轴对称图形,故此选项不合题意;
B、不是轴对称图形,故此选项不合题意;
C、是轴对称图形,故此选项符合题意;
D、不是轴对称图形,故此选项不合题意.
故选:C.
2.解:A、一个锐角和斜边对应相等,正确,符合AAS,
B、两条直角边对应相等,正确,符合判定SAS;
C、不正确,全等三角形的判定必须有边的参与;
D、斜边和一条直角边对应相等,正确,符合判定HL.
故选:C.
3.解:∵分式有意义,
∴(x+2)(x﹣1)≠0,
解得:x≠﹣2
且
x≠1.
故选:B.
4.解:∵2∠BFE+∠BFC=180°,∠BFE﹣∠BFC=∠CFE=24°,
∴∠BFE=(180°+24°)=68°.
∵AE∥BF,
∴∠AEF=180°﹣∠BFE=112°.
故选:C.
5.解:A、作线段AB=CD,没有做出判断,不是命题;
B、两直线平行,没有做出判断,不是命题;
C、对顶角相等,是命题;
D、连接AB,没有做出判断,不是命题;
故选:C.
6.解:∵CE∥AB,
∴∠B=∠DCE,∠BAD=∠E,
在△ABD和△ECD中,
∴△ABD≌△ECD(AAS),
∴DA=DE,AB=CE,
∵AD=DE,BD=CD,
∴四边形ABEC为平行四边形,
故选:D.
7.解:在这组数据中出现次数最多的是3,即众数是3;
把这组数据按照从小到大的顺序排列3,3,3,4,4,5,6,
∴中位数为4;
故选:A.
8.解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),
3x+3k=2x+6,
3x﹣2x=6﹣3k,
x=6﹣3k,
∵方程的根为正数,
∴6﹣3k>0,
解得:k<2,
∵分式方程的解为正数,
x+3≠0,x+k≠0,
x≠﹣3,k≠3,
即k的范围是k<2,
故选:A.
9.解:∵四边形ABCD为正方形,△ABE为等边三角形,
∴∠BAE=60°,∠BAD=∠ADC=90°,AB=AE=AD,
∴∠EAD=30°,
∵AD=AB=AE,
∴∠AED=∠ADE,
∴,
∴∠CDE=90°﹣∠ADE=15°.
故选:D.
10.解:∵BD平分∠ABC,AF⊥BD,
∴∠ABE=∠FBE,∠AEB=∠FEB=90°,
∵BE=BE,
∴△ABE≌△FBE(ASA),
∴BF=AB=7,AE=EF,
∵BC=10,
∴CF=3,
∵点G是AC的中点,
∴AG=CG,
∴EG=CF=,
故选:A.
11.解:∵E、F分别是边AB、BC的中点,
∴EF∥AC,EF=AC,
同理可知,HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,AC与BD不一定相等,A说法错误;
四边形EFGH是正方形时,AC与BD互相垂直且相等,B说法正确;
若AC=BD,则四边形EFGH是菱形,C说法错误;
若AC⊥BD,则四边形EFGH是矩形,D说法错误;
故选:B.
12.解:作C关于直线AB的对称点D,过D作DE⊥BC交AB于F,
则此时,CF+EF的值最小,且CF+EF的最小值=DE,
∵DG⊥AB,
∴∠CGB=90°,
∵BC=2,∠B=30°,
∴CG=BC=1,
∴CD=2,
∵∠DGF=∠BEF=90°,∠BFE=∠DFG,
∴∠D=∠B=30°,
∴DE=,
∴CF+EF的最小值是,
故选:C.
二.填空题(共6小题,满分18分,每小题3分)
13.解:∵DE是线段AB的垂直平分线,
∴EA=EB,
∴△BEC的周长=BC+CE+EB=BC+CE+EA=BC+AC=13,
故答案为:13.
14.解:=8.9
(分),
故答案为:8.9.
15.解:∵四边形ABDE是矩形,
∴∠BAE=∠E=90°,
∵∠ADE=62°,
∴∠EAD=28°,
∵AC⊥CD,
∴∠C=∠E=90°
∵AE=AC,AD=AD,
∴Rt△ACD≌Rt△AED(HL)
∴∠EAD=∠CAD=28°,
∴∠BAF=90°﹣28°﹣28°=34°,
故答案为:34°.
16.解:∵S甲2=0.075,S乙2=0.04
∴S甲2>S乙2
∴乙的波动比较小,乙比较稳定
故答案为:乙.
17.解:∵AD∥BC,∠EFG=52°,
∴∠DEF=∠FEG=52°,∠1+∠2=180°,
由折叠的性质可得∠GEF=∠DEF=52°,
∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°,
∴∠2=180°﹣∠1=104°,
∴∠2﹣∠1=104°﹣76°=28°.
故答案为:28.
18.解:如图,若BC为边,AB是对角线,
∵四边形ACBD1是平行四边形,且∠ACB=90°,CA=CB=2,
∴BD1=AC=2,
若AB,BC为边,
∵四边形ABCD3是平行四边形,
∴D3A∥BC,AD3=BC=2,
∴∠D3AE=∠CBA=45°,
∴D3E=AE=,
∴BE=AE+AB=3
∴BD3===2,
若AB,AC为边,
∵ABD2C是平行四边形,
∴BD2=AC=2,
故答案为:2或2
三.解答题(共6小题,满分66分)
19.解:原式=?
=?
=.
20.解:(1)∵多项式(x2﹣ax+3)(x2+b)的展开式中不含x3和x2项,
∴x4+bx2﹣ax3﹣abx+3x2+3b,
故﹣a=0,b+3=0,
解得:a=0,b=﹣3,
则a+b=﹣3;
(2)原式=??
=,
当a=﹣4,a=4,a=﹣2时无意义,
当a=3时,原式=0.
21.解:(1)初中5名选手的平均分,众数b=85,
高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;
(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,
故初中部决赛成绩较好;
(3),
∵,
∴初中代表队选手成绩比较稳定.
22.(1)证明:∵四边形ABCD是平行四边形,
∴EB=ED,AB∥CD,
∴∠EBP=∠EDQ,
在△PBE和△QDE中,,
∴△PBE≌△QDE(ASA);
(2)证明:如图所示:
∵△PBE≌△QDE,
∴EP=EQ,
同理:△BME≌△DNE(ASA),
∴EM=EN,
∴四边形PMQN是平行四边形,
∵PQ⊥MN,
∴四边形PMQN是菱形.
23.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,
依题意,得:+=1,
解得:x=20,
经检验,x=20是原分式方程的解,且符合题意,
∴1.5x=30.
答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;
(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,
依题意,得:12y+12(y﹣250)=27720,
解得:y=1280,
∴y﹣250=1030.
甲工程队单独完成共需要费用:1280×20=25600(元),
乙工程队单独完成共需要费用:1030×30=30900(元).
∵25600<30900,
∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.
24.解:(1)证明:∵∠ABC=90°
∴∠BAP+∠APB=90°
∵BQ⊥AP
∴∠APB+∠QBC=90°,
∴∠QBC=∠BAP,
在△ABP于△BCQ中,
,
∴△ABP≌△BCQ(ASA),
∴BP=CQ,
(2)由翻折可知,AB=BC',
连接BN,在Rt△ABN和Rt△C'BN中,AB=BC',BN=BN,
∴Rt△ABN≌△Rt△C'BN(HL),
∴AN=NC',
∵BP=PC,AB=8,
∴BP=2=CQ,CP=DQ=6,
设AN=NC'=a,则DN=8﹣a,
∴在Rt△NDQ中,(8﹣a)2+62=(a+2)2
解得:a=4.8,
即AN=4.8.
(3)解:过Q点作QG⊥BM于G,由(1)知BP=CQ=BG=x,BM=MQ.
设MQ=BM=y,则MG=y﹣x,
∴在Rt△MQG中,y2=82+(y﹣x)2,
∴.
∴S△BMC′=S△BMQ﹣S△BC'Q=
=,
=.