七上数学第一章《数学与我们同行》单元复习
一、选择题
1.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )
A.50 B.64
C.68 D.72
2. 一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )
A.3 个 B.4 个
C.5 个 D.6 个
3.七年级(1)班的四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二.”文文说:“甲得第二,丁得第四.”凡凡说:“丙得第二,丁得第三.”名次公布后,他们每人只猜对一半,那么甲、乙、丙、丁的名次顺序为( )
A.甲、乙、丙、丁 B.甲、丙、乙、丁
C.甲、丁、乙、丙 D.甲、丙、丁、乙
4.某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是( )
A.5 B.6
C.7 D.8
5.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上、右下)爬行,从一间蜂房爬到右边相邻的蜂房中去.例如,蜜蜂爬到1号蜂房的爬法有:蜜蜂?1号;蜜蜂?0号?1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法( )
A.7 B.8 C.9 D.10
6.在下边的日历中,任意圈出一竖列上相邻的三个数,这三个数之和不可能为不( )
A.60 B.40 C.36 D.27
7.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,第6次应拿走 ( )
A.②号棒 B.⑦号棒 C.⑧号棒 D.⑩号棒
8.用火柴棒按如图所示方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是 ( )
A.48 B.50 C.52 D.54
9.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在( )
A.第504个正方形的左下角 B.第504个正方形的右下角
C.第505个正方形的左上角 D.第505个正方形的右下角
10.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )
A.671 B.672 C.673 D.674
二、填空题
11.观察下列数字的填写规律,在横线上填上适当的数:
1,1,2,3,5,8,13, __ ,….
12.奥林匹克五环旗上五个大小相同的圆,环环相扣,共有 个交点.
13.用火柴棒按图中的方式搭图形,按照这种方式搭下去,搭第n个图形需______根火柴棒.
第13题图
14.在如图所示的2×2方格图案中有_____个正方形;
3×3方格图案中有______个正方形;
4×4方格图案中有______个正方形.
15.春秋时代,人们用算筹摆放图形,来表示1、2、3、4、5、6、7,你认为他们会用______图来表示“8”,用______图来表示“9”.
16.已知一根长80 cm、底面积是30 cm2的圆柱形钢材,若把它截成相等的两段,则表面积增加了 cm2.
17.用48 m长的竹篱笆在空地上围成一个绿化场地,若现有两种设计方案:一种是围成正方形场地,另一种是围成圆形场地,则围成 场地面积较大.(填“圆形”或“正方形”)
18.下图中每个小玻璃球的体积是 cm3,大玻璃球的体积是 cm3.
19.有一种“抢30”的游戏,规则是:甲先说“1”或“1,2”,当甲先说“1”时,乙接着说“2”或“2,3”;当甲先说“1,2”时,乙接着说“3”或“3,4”,然后甲再接着按次序往下说一个或两个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.那么采取适当策略,其结果是 胜.(填“甲”或“乙”)
20.观察下列等式:
在上述数字宝塔中,从上往下数,2020在第 层.
三、解答题
21.某汽车站有三条路线通往不同的地方,第一条路线每隔15 min发车一次,第二条路线每隔20 min发车一次,第三条路线每隔50 min发车一次.三条路线的汽车在同一时间发车后,试问至少再经过多长时间又同时发车?
22. 甲和乙从东、西两地同时出发,相对而行,两地相距20 km.甲每小时走6 km,乙每小时走4 km,几小时两人相遇? 如果甲带了一只狗,和甲同时出发,狗以每小时10 km的速度向乙跑去,遇到乙后即回头向甲跑去,遇到甲又回头向乙跑去,直到甲、乙两人相遇时狗才停住.问这只狗共跑了多少千米的路?
23. 如图,有一堆土,甲处比乙处高50 cm,现在要把这堆土推平整,使甲处和乙处一样高,要从甲处取多少厘米厚的土填在乙处?
24. 容积为200L的水箱上装有两根进水管A,B和一根排水管C.如图,先由A,B两根进水管同时向水箱内注水,再由B管单独向水箱内注水,最后由C管将水箱内的水排完.
(1) 水箱内原有水 L,B进水管每分钟向水箱内注水 L,A,B两根进水管中工作效率较高的是 (填“A”或“B”) 进水管;
(2) 若一开始只由B管单独注水,则注满水箱要多少分钟?
(3) 若一开始只由B管单独注水,同时打开C管排水,则多少分钟后水箱内的水被排完?
25.将一些数排列成下表:
第1列 第2列 第3列 第4列
第1行 1 4 5 10
第2行 4 8 10 12
第3行 9 12 15 14
试探索:(1)第10行第2列的数是多少?
(2)数81所在的行和列分别是多少?
(3)数100所在的行和列分别是多少?
26.如图,描述了某人早晨8:00骑摩托车出发后所走路程与时间的关系,根据折线图提供的信息思考下列问题:?
(1)到13时,此人共走了多少千米??
(2)途中休息了几次,从几时到几时??
(3)此人前进的最快速度是多少?是在哪个时段??
27.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39 ②,
②一①得:3S―S=39-1,即2S=39-1,
∴S=.
得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2020的值?
七上数学第一章《数学与我们同行》单元复习
参考答案
一、选择题
1.D 2.C 3.B 4.D 5.B 6.B 7.D 8.D 9.D 10.B
二、填空题
11.21 12.8 13. 14. 5;14;30 15. 16.60 17.圆形 18.3 14 19.乙 20. 44
三、解答题
21.因为15、20和50的最小公倍数为300,所以至少再经过300 min即5 h,三条路线的汽车又同时发车
22.20÷(6+4)=2(h),20÷(6+4)×10=20(km).答:2h两人相遇,这只狗共奔跑了20 km的路
23.因为50 cm=0.5 m,所以(100-60)×50×0.5÷(100×50)=0.2(m),0.5-0.2=0.3(m),0.3 m=30 cm.答:现在要把这堆土推平整,使甲处和乙处一样高,要从甲处取30 cm厚的土填在乙处
24.(1) 50 A (2) (200-50)÷=18(min) (3) 200÷4=50(L),50÷(50-)=(min)
25.分析:观察可知第1列的数从上往下依次为;
第2列的数从上往下依次为;
第3列的数从上往下依次为;
第4列的数从上往下依次为.
解:(1)第10行第2列的数是.
(2)由于81只能是9的平方,所以数81在第9行第1列.
(3)由于所以数100在第10行第1列;
由于所以数100在第25行第2列;
由于所以数100在第20行第3列;
由于所以数100在第46行第4列.
所以数100在第10行第1列,第25行第2列,第20行第3列,第46行第4列.
26. 解:(1)到13时共走了60千米.?
(2)途中休息了两次,10时到11时,12时到13时.?
(3)最快速度是每小时40千米,是在13时到14时.?
27.设S=1+m+m2+m3+m4+…+m2020 …………………①,
在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2020+m2021 ………………②
②一①得:mS―S=m2021-1. 然后求出S即可求出1+m+m2+m3+m4+…+m2020的值.