(共24张PPT)
线段垂直平分线的有关作图
1.能用尺规作已知线段的垂直平分线.(难点)
2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.
3.能够运用尺规作图的方法解决简单的作图问题.(重点)
1.线段的垂直平分线的性质:
线段垂直平分线上的点到线段两端点的距离相等.
2.线段的垂直平分线的判定:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
线段垂直平分线的判定
与线段两个端点距离相等的点在这条线段的垂直平分线上.
应用格式:
∵ PA
=PB,
∴ 点P
在AB
的垂直平分线上.
P
A
B
作用:判断一个点是否在线段的垂直平分线上.
问题1:有时我们感觉一(两)个平面图形是轴对称的,如何验证呢?
A
B
C
A
′
B
′
C
′
通过折叠,如果这(两)个图形能够互相重合,则这(两)个图形是轴对称的.
问题2:不折叠图形,你能准确地作出轴对称图形的对称轴吗?
尺规作图
如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?
A
B
分析:我们只要连接点A和点B,作出线段AB的垂直平分线,就可得到点A和点B的对称轴.为此作出到点A,B的距离相等的两点,即线段AB的垂直平分线上的两点,从而作出线段AB的垂直平分线.
A
B
C
D
作法:
(1)分别以点A,B为圆心,以大于
AB的长为半径作弧,两弧交于C,D两点.
(2)作直线CD.
CD即为所求.
特别说明:这个作法实际上就是线段垂直平分线的尺规作图,我们也可以用这种方法确定线段的中点.
如图,A,B是路边两个新建小区,要在公路边增设一个公共汽车站.使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?
A
B
分析:增设的公共汽车站要满足到两个小区的路程一样长,应在线段AB的垂直平分线上,又要在公路边上,所以找到AB垂直平分线与公路的交点便是.
公共汽车站
例1
如图,已知点A、点B以及直线l.
(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);
解:(1)如图所示:
M
N
A
B
l
P
(2)在△AMP和△BNP中,
∵AM=PN,AP=BP,PM=BN,
∴△AMP≌△PNB(SSS),
∴∠MAP=∠NPB.
M
N
A
B
l
P
例1
如图,已知点A、点B以及直线l.
(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);
(2)在(1)中所作的图中,若AM=PN,BN=PM,求证:∠MAP=∠NPB.
例2
如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)
O
N
M
A
B
方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.
解:如图所示:
P
想一想:下图中的五角星有几条对称轴?如何作出这些对称轴呢?
A
B
作法:(1)找出五角星的一对对称点A和B,连接AB.
(2)作出线段AB的垂直平分线l.
则l就是这个五角星的一条对称轴.
l
用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.
作轴对称图形的对称轴
方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.
例3
如图,△ABC和△A′B′C′关于直线l对称,请用无刻度的直尺作出它们的对称轴.
A
B
C
A
′
B
′
C
′
l
方法总结:如果成轴对称的两个图形对称点连线段(或延长线)相交,那么交点必定在对称轴上.
解:延长BC、B'C'交于点P,延长AC,A'C'交于点Q,连接PQ,则直线PQ即为所要求作的直线l.
P
Q
练一练:1.作出下列图形的一条对称轴.和同学比较一下,你们作出的对称轴一样吗?
2.如图,角是轴对称图形吗?如果是,它的对称轴是什么?
角是轴对称图形,角平分线所在的直线就是角的对称轴.
3.如图,有A,B,C三个村庄,现准备要建一所希望小学,要求学校到三个村庄的距离相等,请你确定学校的位置.
B
C
学校在连接任意两点的两条线段的垂直平分线的交点处.
A
6.如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内填涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.
1.如图所示,AC=AD,BC=BD,则下列说法正确的是( )
A.AB垂直平分CD
B
.CD垂直平分AB
;
C.AB与CD互相垂直平分
D.CD平分∠
ACB
.
A
B
C
D
A
2.在锐角三角形ABC内一点P,满足PA=PB=PC,则点P是△ABC
(
)
A.三条角平分线的交点
B.三条中线的交点
C.三条高的交点
D.三边垂直平分线的交点
D
4.下列说法:
①若点P、E是线段AB的垂直平分线上两点,则EA=EB,PA=PB;
②若PA=PB,EA=EB,则直线PE垂直平分线段AB;
③若PA=PB,则点P必是线段AB的垂直平分线上的点;
④若EA=EB,则经过点E的直线垂直平分线段AB.
其中正确的有
(填序号).
①
②
③
3.已知线段AB,在平面上找到三个点D、E、F,使DA=DB,EA=EB,FA=FB,这样的点的组合共有 种.
无数
5.如图,△ABC中,AB=AC,AB的垂直平分线交AC于E,连接BE,AB+BC=16cm,则△BCE的周长是
cm.
A
B
C
D
E
16
6.如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.
解:AD垂直平分EF.
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴∠EAD=∠FAD,∠AED=∠AFD=90°.
又∵AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF.
∴A、D均在线段EF的垂直平分线上,即直线AD垂直平分线段EF.
线段的垂直
平分线的
有关作图
尺规作图
作对称轴的常见方法
属于基本作图之一,必须熟练掌握
(1)将图形对折;
(2)用尺规作图;
(3)用刻度尺先取一对对称点连线的中点,然后作垂线
画出本节课的思维导图.