华师大版九年级数学二次函数单元测试卷

文档属性

名称 华师大版九年级数学二次函数单元测试卷
格式 zip
文件大小 42.9KB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2011-11-23 21:19:26

图片预览

文档简介

九年级数学单元测试卷(一)
班级: 姓名: 得分:
一、选择题(本大题共10小题,每小题4分,共40分)
1.下列函数不属于二次函数的是( )
A.y =(x-1)(x+2) B.y =(x+1)2 C. y =1-x2 D. y =2(x+3)2-2x2
2.二次函数y =-(x+1)2+3的图象的顶点坐标是( )
A.(-1,3) B.(1,3) C.(-1,-3) D.(1,-3
3.已知二次函数的图象经过原点,则的值为 ( )
A. 0或2 B. 0 C. 2 D.无法确定
4. 抛物线y=2x2+4x-3的顶点坐标是( )
 A.(1,-5) B.(-1,-5)  C.(-1,-4) D.(-2,-7)
5. 抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
6. 二次函数图象的开口方向、对称轴和顶点坐标分别为( )
A.开口向下,对称轴为,顶点坐标为(3,5)
B.开口向下,对称轴为,顶点坐标为(3,5)
C.开口向上,对称轴为,顶点坐标为(-3,5)
D.开口向上,对称轴为,顶点坐标为(-3,5)
7.下列说法错误的是( )
A.二次函数y=3x2中,当x>0时,y随x的增大而增大
B.二次函数y=-6x2中,当x=0时,y有最大值0
C.a越大图象开口越小,a越小图象开口越大
D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点
8.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )
A .y=x2+2x-2 B. y=x2+2x+1 C. y=x2-2x-1 D .y=x2-2x+1
9.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是(   )
A.x= - B.x = 2. C.x = 4. D.x = 3.
10.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是( )
A.a>0. B.b>0.
C.c<0. D.abc>0.
二、填空题(本大题共5小题,每小题4分,共20分)
11.一个正方形的面积为16cm2,当把边长增加x cm时,正方形面积为y cm2,则y关于x的函数为 。
12. 二次函数y=-3x2+6x+9的图象的开口______,顶点坐标是__ _ _ __,对称轴是 ,当x_______时,y随x 的增大而增大;当x____时,y随x的增大而减小;当x=______时,y最值=________。
13.将抛物线y=x2向上平移2个单位后,再向右平移4个单位,则此时抛物线的解析式是 。
14.直线y=x+2与抛物线y=x2+2x的交点坐标为_____ ___.
15. 将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点( 3,-1 ),那么移动后的抛物线的关系式为_____ _ ____.
三、(本题共9小题,满分90分)
16.一个二次函数,它的对称轴是y轴,顶点是原点,且经过点(1,—3)。(9分)
(1)写出这个二次函数的解析式,并画出它的图象;
(2)图象在对称轴右侧部分,y随x的增大怎样变化
(3)指出这个函数有最大值还是最小值,并求出这个值。
17.已知二次函数的图象的顶点坐标为(3,-2)且与轴交与(0,) (8分)
(1)求函数的解析式,并画出它的图象;(2)当为何值时,随增大而增大。
18. 根据下列条件,分别求出对应的二次函数关系式. (10分)
(1)已知抛物线的顶点是(-1,-2),且过点(1,10);
(2)已知抛物线过三点:(0,-2),(1,0),(2,3).
19.若抛物线经过点A(,0)和点B(-2,),求点A、B的坐标。(10分)
20.已知抛物线的顶点在轴上,求这个函数的解析式及其顶点坐标。(8分)
21.已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m)。(10分)
(1)求抛物线的解析式;
(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象?
22.已知二次函数 (10分)
(1)用配方法求其图象的顶点坐标和对称轴;
(2)当取何值时,随的增大而增大?当取何值时,随的增大而减小?
23. 已知二次函数y=(m2-2)x2-4mx+n的图象的对称轴是x=2,且最高点在直线y=x+1上,求这个二次函数的解析式。(10分)
24.在平面直角坐标系中,△AOB的位置如图5所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1)。(15分)
(1)求点B的坐标; (2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为Bl,求△AB1 B的面积。
图5