二次函数的应用练习题
一、选择题
1.
关于二次函数y=x2+4x-7的最大(小)值叙述正确的是
(
)
A.当x=2时,函数有最大值
B.当x=2时,函数有最小值
C.当x=-2时,函数有最大值
D.当x=-2时,函数有最小值
2.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。若每件商品的售价为x元,则可卖处(350-10x)件商品。商品所获得的利润y元与售价x的函数关系为(
)
A、
B、
C、
D、
3.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为( )
A.y=
B.y=﹣
C.y=﹣
D.y=
4.有一拱桥的桥拱是抛物线形,
其表达式是Y=-0.25x2,当桥下水面宽为12米时,水面到拱桥拱顶的距离为(?????
)?
A.?3米?????B.?2
米???C.?4
米?????D.?9米
5.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是(
)
A.1月、2月、3月
B.2月、3月、4月
C.1月、2月、12月
D.1月、11月、12月
6、烟花厂为某旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )
A.3s
B.4s
C.5s
D.6s
7.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )
A.
cm2
B.
cm2
C.
cm2
D.
cm2
8.如图,在△ABC中,∠C=90°,AB=10
cm,BC=8
cm,点P从点A沿AC向点C以1
cm/s的速度运动,同时点Q从点C沿CB向点B以2
cm/s的速度运动(点Q运动到点B停止),在运动过程中,△PCQ面积的最大值为(
)
A.6
cm2
B.9
cm2
C.12
cm2
D.15
cm2
9.如图,二次函数y=
-x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足
S△AOP=3,则点P的坐标是( )
A.(-3,-3)
B.(1,-3)
C.(-3,-3)或(-3,1)
D.(-3,-3)或(1,-3)
10、如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是( )
A.y=x+1
B.y=x-1
C.y=x2-x+1
D.y=x2-x-1
二、填空题
11、某司机驾车行驶在公路上,突然发现正前方有一行人,他迅速采取紧急刹车制动已知,汽车刹车后行驶距离与行驶时间之间的函数关系式为,则这个行人至少在______米以外,司机刹车后才不会撞到行人
12.如图,用总长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成长方形花圃,设花圃的一边AB为x米,面积为S平方米,则S与x的函数关系式为
13.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为9
m,AB=36
m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为7
m,则DE的长为
m.
14.在底边长BC=20cm,高AM=12cm的三角形铁板ABC上,要截一块矩形铁板EFGH,如图所示.当矩形的边EF=
cm时,矩形铁板的面积最大,其最大面积为
?cm?.
15、如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____
16、如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形(点B0是坐标原点),则△A2021B2020B2021的腰长=____
三、解答题
17.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.
(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?
18.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
19.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1
m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h.已知点O与球网的水平距离为5
m,球网的高度为1.55
m.
(1)当a=-时:
①求h的值;②通过计算判断此球能否过网;
(2)若甲发球过网后,羽毛球飞行到离点O的水平距离为7
m,离地面的高度为
m的Q处时,乙扣球成功,求a的值.
20、已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.
(1)求过A、B、C三点的抛物线的解析式;
(2)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.