中小学教育资源及组卷应用平台
专题04
圆锥曲线的方程、图像与性质
知识网络
重难点突破
知识点一
椭圆的方程与性质
1、椭圆的定义
平面内与两个定点F1,F2的距离之和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M|+=2a},=2c,其中a>0,c>0,且a,c为常数.
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.
2、椭圆的标准方程和几何性质
标准方程
+=1(a>b>0)
+=1(a>b>0)
图形
性质
范围
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
对称性
对称轴:坐标轴,对称中心:(0,0)
顶点
A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)
轴
长轴A1A2的长为2a,短轴B1B2的长为2b
焦距
=2c
离心率
e=, e∈(0,1)
a,b,c的关系
c2=a2-b2
例1、(2020·河南洛阳一模)已知椭圆+=1的长轴在y轴上,且焦距为4,则m等于( )
A.5
B.6
C.9
D.10
【变式训练1-1】、已知圆F1:(x+1)2+y2=16,定点F2(1,0),动圆M过点F2,且与圆F1相内切,那么点M的轨迹C的方程为____.
【变式训练1-2】、如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是____.
知识点二
直线与椭圆的位置关系
1.焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫做椭圆的焦半径,分别记作r1=|PF1|,r2=|PF2|.
(1)+=1(a>b>0),r1=a+ex0,r2=a-ex0;
(2)+=1(a>b>0),r1=a+ey0,r2=a-ey0;
(3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点).
2.焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中
(1)当P为短轴端点时,θ最大.
(2)S=|PF1||PF2|·sin
θ=b2tan
=c|y0|,当|y0|=b时,即点P为短轴端点时,S取最大值,最大值为bc.
(3)焦点三角形的周长为2(a+c).
3.焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长lmin=.
4.AB为椭圆+=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则
(1)弦长l=|x1-x2|=
|y1-y2|;
(2)直线AB的斜率kAB=-.
例2、求满足下列条件的椭圆的标准方程:
(1)两个顶点为(3,0),(-3,0),离心率为;
(2)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方程.
【变式训练2-1】、已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为(
)
A.
B.
C.
D.
【变式训练2-2】、设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为___________.
知识点三
双曲线的方程与性质
1、
双曲线的定义
平面内与两个定点F1,F2的距离之差的绝对值等于非零常数(小于)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
集合P={M=2a},=2c,其中a,c为常数,且a>0,c>0.
(1)当a<c时,点P的轨迹是双曲线;
(2)当a=c时,点P的轨迹是两条射线;
(3)当a>c时,点P不存在.
2、双曲线的标准方程和几何性质
标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)
图形
性质
范围
x≥a或x≤-a,y∈R
y≤-a或y≥a,x∈R
对称性
对称轴:坐标轴,对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±xy=±x
离心率
e= ,e∈(1,+∞)
a,b,c的关系
c2=a2+b2
实虚轴
线段A1A2叫做双曲线的实轴,它的长=2a;线段B1B2叫做双曲线的虚轴,它的长=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
例3、(华东师范大学附中2019届模拟)(1)设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3=4,则△PF1F2的面积等于( )
A.4
B.8
C.24
D.48
(2)设双曲线-=1的左、右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|BF2|+|AF2|的最小值为__________.
【变式训练3-1】、 根据下列条件,求双曲线的标准方程.
(1)虚轴长为12,离心率为;
(2)焦距为26,且经过点M(0,12);
(3)经过两点P(-3,2)和Q(-6,-7).
知识点四
直线与双曲线位置关系
例4、设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为(
)
A.
B.
C.
D.
【变式训练4-1】、(2019年全国Ⅱ卷)设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点.若,则C的离心率为(
)
A.
B.
C.2
D.
知识点五
抛物线的方程与性质
1、抛物线的定义
平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2、抛物线的标准方程与几何性质
标准方程
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
p的几何意义:焦点F到准线l的距离
图形
顶点
O(0,0)
对称轴
x轴
y轴
焦点
F
F
F
F
离心率
e=1
准线
x=-
x=
y=-
y=
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口方向
向右
向左
向上
向下
焦半径(其中P(x0,y0))
= x0+
= -x0+
= y0+
= -y0+
例5、(1)若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为( )
A.
B.1
C.
D.2
(2)设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为________.
【变式训练5-1】、已知点F1,F2分别是双曲线3x2-y2=3a2(a>0)的左、右焦点,点P是抛物线y2=8ax与双曲线的一个交点,若+=12,则抛物线的准线方程为__________.
知识点六
直线与抛物线位置关系
1、
与焦点弦有关的常用结论
设A(x1,y1),B(x2,y2).
(1)y1y2=-p2,x1x2=.
(2)|AB|=x1+x2+p=(θ为AB的倾斜角).
(3)+为定值.
(4)以AB为直径的圆与准线相切.
(5)以AF或BF为直径的圆与y轴相切.
2、设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=,y1y2=-p2;
(2)|AF|=,|BF|=,弦长|AB|=x1+x2+p=(α为弦AB的倾斜角);
(3)+=;
(4)以弦AB为直径的圆与准线相切;
(5)以AF或BF为直径的圆与y轴相切;
(6)过焦点弦的端点的切线互相垂直且交点在准线上.
例6、如图,已知抛物线关于y轴对称,它的顶点在坐标原点,点P(2,1),A(x1,y1),B(x2,y2)均
在抛物线上.
(1)求抛物线的方程;
(2)若∠APB的平分线垂直于y轴,求证:直线AB的斜率为定值.
【变式训练6-1】、(2020年高考全国Ⅰ卷理数)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=(
)
A.2
B.3
C.6
D.9
知识点七
直线与圆锥曲线方程的综合应用
1、
直线与圆锥曲线的位置关系
(1)从几何角度看,可分为三类:无公共点、仅有一个公共点以及有两个相异的公共点.
(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x,y)=0.
由消元(如消去y),得ax2+bx+c=0.
①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合).
②若a≠0,设Δ=b2-4ac.
当Δ>0时,直线和圆锥曲线相交于不同的两点;
当Δ=0时,直线和圆锥曲线相切于一点;
当Δ<0时,直线和圆锥曲线没有公共点.
2、
直线与圆锥曲线相交时的弦长问题
(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长:
==
== .
(2)斜率不存在时,可求出交点坐标,直接求解(利用坐标轴上两点间距离公式).
3、
圆锥曲线的中点弦问题
遇到弦中点问题常用“点差法”或“根与系数的关系”求解.
在椭圆+=1中,以P(x0,y0)为中点的弦所在直线的斜率k= - ;在双曲线-=1中,以P(x0,y0)为中点的弦所在直线的斜率k= ;在抛物线y2=2px(p>0)中,以P(x0,y0)为中点的弦所在直线的斜率 k= .在使用根与系数的关系时,要注意使用条件是Δ≥0.
例7、已知直线l:y=kx+2,椭圆C:+y2=1.试问当k取何值时,直线l与椭圆C:
(1)
有两个不重合的公共点;
(2)
有且只有一个公共点;
(3)
没有公共点.
【变式训练7-1】、(安徽蚌埠二中2019届模拟)已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:
(1)有两个不重合的公共点;
(2)有且只有一个公共点;
(3)没有公共点.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题04
圆锥曲线的方程、图像与性质
知识网络
重难点突破
知识点一
椭圆的方程与性质
1、椭圆的定义
平面内与两个定点F1,F2的距离之和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M|+=2a},=2c,其中a>0,c>0,且a,c为常数.
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.
2、椭圆的标准方程和几何性质
标准方程
+=1(a>b>0)
+=1(a>b>0)
图形
性质
范围
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
对称性
对称轴:坐标轴,对称中心:(0,0)
顶点
A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)
轴
长轴A1A2的长为2a,短轴B1B2的长为2b
焦距
=2c
离心率
e=, e∈(0,1)
a,b,c的关系
c2=a2-b2
例1、(2020·河南洛阳一模)已知椭圆+=1的长轴在y轴上,且焦距为4,则m等于( )
A.5
B.6
C.9
D.10
【答案】C
【解析】由椭圆+=1的长轴在y轴上,焦距为4,可得=2,解得m=9.故选C.
【变式训练1-1】、已知圆F1:(x+1)2+y2=16,定点F2(1,0),动圆M过点F2,且与圆F1相内切,那么点M的轨迹C的方程为____.
【答案】+=1
【解析】 设圆M的半径为r.∵圆M与圆F1相内切,∴MF1=4-r.∵圆M过点F2,∴MF2=r,∴MF1=4-MF2,即MF1+MF2=4>F1F2,∴点M的轨迹C是以F1,F2为焦点的椭圆,设椭圆的方程为+=1(a>b>0),则有2a=4,c=1,∴a=2,b=,∴轨迹C的方程为+=1.
【变式训练1-2】、如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是____.
【答案】以O,A为焦点,r为长轴长的椭圆
【解析】 连结QA,由已知得QA=QP.∴QO+QA=QO+QP=OP=r.又∵点A在圆内,∴OA<OP,根据椭圆的定义,点Q的轨迹是以O,A为焦点,r为长轴长的椭圆.
知识点二
直线与椭圆的位置关系
1.焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫做椭圆的焦半径,分别记作r1=|PF1|,r2=|PF2|.
(1)+=1(a>b>0),r1=a+ex0,r2=a-ex0;
(2)+=1(a>b>0),r1=a+ey0,r2=a-ey0;
(3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点).
2.焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中
(1)当P为短轴端点时,θ最大.
(2)S=|PF1||PF2|·sin
θ=b2tan
=c|y0|,当|y0|=b时,即点P为短轴端点时,S取最大值,最大值为bc.
(3)焦点三角形的周长为2(a+c).
3.焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长lmin=.
4.AB为椭圆+=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则
(1)弦长l=|x1-x2|=
|y1-y2|;
(2)直线AB的斜率kAB=-.
例2、求满足下列条件的椭圆的标准方程:
(1)两个顶点为(3,0),(-3,0),离心率为;
(2)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方程.
【解析】 (1)如果焦点在x轴上,则a=3,离心率=,∴c=2,∴b2=a2-c2=1,∴椭圆的标准方程为+y2=1;如果焦点在y轴上,则b=3,将=代入b2=a2-c2中,得a2-a2=9,∴a2=81,∴椭圆的标准方程为+=1.故所求椭圆的标准方程为+y2=1和+=1.
(2)(方法1)椭圆+=1的a=5,b=3,
∴c=4,焦点为(0,-4),(0,4).由椭圆定义知,2a=+,解得a=2.由c2=a2-b2得b2=4.
∴所求椭圆的标准方程为+=1.
(方法2)设所求椭圆方程为+=1(k<9),将点(,-)坐标代入,得
2+=1,解得k=5(k=21舍去),∴所求椭圆的标准方程为+=1.
【变式训练2-1】、已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为(
)
A.
B.
C.
D.
【答案】B
【解析】法一:如图,由已知可设,则,
由椭圆的定义有.
在中,由余弦定理推论得.
在中,由余弦定理得,解得.
所求椭圆方程为,故选B.
法二:由已知可设,则,
由椭圆的定义有.
在和中,由余弦定理得,
又互补,,两式消去,得,解得.所求椭圆方程为【变式训练2-2】、设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为___________.
【答案】
【解析】由已知可得,
,∴.
设点的坐标为,则,
又,解得,
,解得(舍去),
的坐标为.,故选B.
知识点三
双曲线的方程与性质
1、
双曲线的定义
平面内与两个定点F1,F2的距离之差的绝对值等于非零常数(小于)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
集合P={M=2a},=2c,其中a,c为常数,且a>0,c>0.
(1)当a<c时,点P的轨迹是双曲线;
(2)当a=c时,点P的轨迹是两条射线;
(3)当a>c时,点P不存在.
2、双曲线的标准方程和几何性质
标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)
图形
性质
范围
x≥a或x≤-a,y∈R
y≤-a或y≥a,x∈R
对称性
对称轴:坐标轴,对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±xy=±x
离心率
e= ,e∈(1,+∞)
a,b,c的关系
c2=a2+b2
实虚轴
线段A1A2叫做双曲线的实轴,它的长=2a;线段B1B2叫做双曲线的虚轴,它的长=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
例3、(华东师范大学附中2019届模拟)(1)设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3=4,则△PF1F2的面积等于( )
A.4
B.8
C.24
D.48
(2)设双曲线-=1的左、右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|BF2|+|AF2|的最小值为__________.
【答案】(1)C (2)10
【解析】(1)双曲线的实轴长为2,焦距为|F1F2|=10.根据题意和双曲线的定义知2=|PF1|-|PF2|=|PF2|-|PF2|=|PF2|,所以|PF2|=6,|PF1|=8,所以|PF1|2+|PF2|2=|F1F2|2,所以PF1⊥PF2.所以S△PF1F2=|PF1|·|PF2|=×6×8=24.
(2)由双曲线的标准方程-=1得a=2,由双曲线的定义可得|AF2|-|AF1|=4,|BF2|-|BF1|=4,所以|AF2|-|AF1|+|BF2|-|BF1|=8.因为|AF1|+|BF1|=|AB|,当直线l过点F1,且垂直于x轴时,|AB|最小,所以(|AF2|+|BF2|)min=|AB|min+8=+8=10.
【变式训练3-1】、 根据下列条件,求双曲线的标准方程.
(1)虚轴长为12,离心率为;
(2)焦距为26,且经过点M(0,12);
(3)经过两点P(-3,2)和Q(-6,-7).
【解析】(1)设双曲线的标准方程为-=1或-=1(a>0,b>0).由题意知2b=12,e==,所以b=6,c=10,a=8.所以双曲线的标准方程为-=1或-=1.
(2)因为双曲线经过点M(0,12),所以M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a=12.又2c=26,所以c=13,所以b2=c2-a2=25.所以双曲线的标准方程为-=1.
(3)设双曲线方程为mx2-ny2=1(mn>0),所以解得所以双曲线的标准方程为-=1.
知识点四
直线与双曲线位置关系
例4、设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为(
)
A.
B.
C.
D.
【答案】D
【解析】由题可知,抛物线的焦点为,所以直线的方程为,即直线的斜率为,
又双曲线的渐近线的方程为,所以,,因为,解得.
故选:.
【变式训练4-1】、(2019年全国Ⅱ卷)设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点.若,则C的离心率为(
)
A.
B.
C.2
D.
【答案】A
【解析】设与轴交于点,由对称性可知轴,
又,为以为直径的圆的半径,∴,,
又点在圆上,,即.,故选A.
知识点五
抛物线的方程与性质
1、抛物线的定义
平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
2、抛物线的标准方程与几何性质
标准方程
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
p的几何意义:焦点F到准线l的距离
图形
顶点
O(0,0)
对称轴
x轴
y轴
焦点
F
F
F
F
离心率
e=1
准线
x=-
x=
y=-
y=
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口方向
向右
向左
向上
向下
焦半径(其中P(x0,y0))
= x0+
= -x0+
= y0+
= -y0+
例5、(1)若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为( )
A.
B.1
C.
D.2
(2)设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小值为________.
【答案】 (1)B (2)4
【解析】 (1)设P(xP,yP),由题可得抛物线焦点为F(1,0),准线方程为x=-1.
又点P到焦点F的距离为2,∴由定义知点P到准线的距离为2.
∴xP+1=2,∴xP=1.代入抛物线方程得|yP|=2,
∴△OFP的面积为S=·|OF|·|yP|=×1×2=1.
(2)如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.
【变式训练5-1】、已知点F1,F2分别是双曲线3x2-y2=3a2(a>0)的左、右焦点,点P是抛物线y2=8ax与双曲线的一个交点,若+=12,则抛物线的准线方程为__________.
【答案】x=-2
【解析】
将双曲线方程化为标准方程得-=1,抛物线的准线为x=-2a,联立
?x=3a,即点P的横坐标为3a.而由?|PF2|=6-a,又因为双曲线的右焦点与抛物线的焦点相同,所以|PF2|=3a+2a=6-a,解得a=1,所以抛物线的准线方程为x=-2.
知识点六
直线与抛物线位置关系
1、
与焦点弦有关的常用结论
设A(x1,y1),B(x2,y2).
(1)y1y2=-p2,x1x2=.
(2)|AB|=x1+x2+p=(θ为AB的倾斜角).
(3)+为定值.
(4)以AB为直径的圆与准线相切.
(5)以AF或BF为直径的圆与y轴相切.
2、设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=,y1y2=-p2;
(2)|AF|=,|BF|=,弦长|AB|=x1+x2+p=(α为弦AB的倾斜角);
(3)+=;
(4)以弦AB为直径的圆与准线相切;
(5)以AF或BF为直径的圆与y轴相切;
(6)过焦点弦的端点的切线互相垂直且交点在准线上.
例6、如图,已知抛物线关于y轴对称,它的顶点在坐标原点,点P(2,1),A(x1,y1),B(x2,y2)均
在抛物线上.
(1)求抛物线的方程;
(2)若∠APB的平分线垂直于y轴,求证:直线AB的斜率为定值.
【解析】 (1)由已知条件,可设抛物线的方程为x2=2py(p>0).∵点P(2,1)在抛物线上,∴22=2p×1,解得p=2.故所求抛物线的方程为x2=4y.
(2)由题意知kAP+kBP=0,∴+=0,∴eq
\f(\f(x,4)-1,x1-2)+eq
\f(\f(x,4)-1,x2-2)=0,∴+=0,
∴x1+x2=-4,∴kAB==eq
\f(\f(x,4)-\f(x,4),x1-x2)==-1,∴直线AB的斜率为定值-1.
【变式训练6-1】、(2020年高考全国Ⅰ卷理数)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=(
)
A.2
B.3
C.6
D.9
【答案】C
【解析】设抛物线的焦点为F,由抛物线的定义知,即,解得.
故选:C.
知识点七
直线与圆锥曲线方程的综合应用
1、
直线与圆锥曲线的位置关系
(1)从几何角度看,可分为三类:无公共点、仅有一个公共点以及有两个相异的公共点.
(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x,y)=0.
由消元(如消去y),得ax2+bx+c=0.
①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合).
②若a≠0,设Δ=b2-4ac.
当Δ>0时,直线和圆锥曲线相交于不同的两点;
当Δ=0时,直线和圆锥曲线相切于一点;
当Δ<0时,直线和圆锥曲线没有公共点.
2、
直线与圆锥曲线相交时的弦长问题
(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长:
==
== .
(2)斜率不存在时,可求出交点坐标,直接求解(利用坐标轴上两点间距离公式).
3、
圆锥曲线的中点弦问题
遇到弦中点问题常用“点差法”或“根与系数的关系”求解.
在椭圆+=1中,以P(x0,y0)为中点的弦所在直线的斜率k= - ;在双曲线-=1中,以P(x0,y0)为中点的弦所在直线的斜率k= ;在抛物线y2=2px(p>0)中,以P(x0,y0)为中点的弦所在直线的斜率 k= .在使用根与系数的关系时,要注意使用条件是Δ≥0.
例7、已知直线l:y=kx+2,椭圆C:+y2=1.试问当k取何值时,直线l与椭圆C:
(1)
有两个不重合的公共点;
(2)
有且只有一个公共点;
(3)
没有公共点.
【解析】
联立消去y并整理,
得(1+4k2)x2+16kx+12=0,依题意,得Δ=(16k)2-4×(1+4k2)×12=16(4k2-3).
(1)
当Δ>0,即k<-或k>时,方程有两个不同的实数根,可知原方程组有两组不同的实数解,这时直线l与椭圆C有两个不重合的公共点.
(2)
当Δ=0,即k=±时,方程有两个相同的实数根,可知原方程组有两组相同的实数解,这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.
(3)
当Δ<0,即-【变式训练7-1】、(安徽蚌埠二中2019届模拟)已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:
(1)有两个不重合的公共点;
(2)有且只有一个公共点;
(3)没有公共点.
【解析】将直线l的方程与椭圆C的方程联立,得方程组消去y,整理得9x2+8mx+2m2-4=0①,Δ=(8m)2-4×9×(2m2-4)=-8m2+144.
(1)当Δ>0,即-3<m<3时,方程①有两个不同的实数根,可知原方程组有两组不同的实解.这时直线l与椭圆C有两个不重合的公共点.
(2)当Δ=0,即m=±3时,方程①有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.
(3)当Δ<0,即m<-3或m>3时,方程①没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)