北师大版八年级数学上册第五章
5.5应用二元一次方程组----里程碑上的数 同步测试
一.选择题
1.一行人去住店.如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有空客房x间,这一行人共有y人,下列方程组中正确的是( )
A. B.
C. D.
2.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100树棵.设甲班去年植树x棵,乙班去年植树y棵,则下列方程组中正确的是( )
A. B.
C. D.
3.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组( )
A. B. C. D.
4.为纪念“5.12”汶川地震一周年,某校七年级(2)班40名同学为地震灾区募捐,共捐款100元,捐款情况如下表:表中部分数据被覆盖看不清了,若设捐款2元的同学有x名,捐款3元的同学有y名,则可列得方程组( )
捐款(元) 1 2 3 4
人数 6
7
A. B.
C. D.
5.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需( )
A.130元 B.100元 C.120元 D.110元
6.用一根长80cm的绳子围成一个长方形,且这个长方形的长比宽多10cm.设这个长方形的长为xcm、宽为ycm,列出关于x、y的二元一次方程组,下列正确的是( )
A. B.
C. D.
7.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地( )
A.120km B.140km C.160km D.180km
8.无人知甲、乙两人年龄,只知道当甲是乙现在的年龄时,乙只有2岁;当乙到甲现在的年龄时,甲是38岁了,问甲、乙现在的年龄各是( )
A.24岁,14岁 B.26岁,14岁 C.26岁,16岁 D.28岁,16岁
9.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是( )
A.200 B.201 C.202 D.203
10.小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会差25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )
A.他身上的钱会不足95元 B.他身上的钱会剩下95元
C.他身上的钱会不足105元 D.他身上的钱会剩下105元
11.八块相同的长方形地砖拼成一个长方形,每块长方形地砖的长等于( )
A.15cm B.30cm C.40 cm D.45 cm
12.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )
A.1,11 B.7,53 C.7,61 D.6,50
二.填空题
13.中国古代的数学专著《九章算术》有方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,可得方程组是 .
14.某班有学生50人,其中男生比女生的2倍少7人,如果设该班男生有x人,女生有y人,那么可列方程组为 .
15.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:12:00时是一个两位数,数字之和为7;13:00时十位与个位数字与12:00时所看到的正好互换了;14:00时比12:00时看到的两位数中间多出一个0.如果设小明在12:00看到的数的十位数字是x,个位数字是y,根据题意可列方程组为 .
16.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组 .
17.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十,今将钱三十,得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱,普通酒一斗的价格是10钱,现在买两种酒2斗共付30钱,问买美酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为 .
18.在如图所示的长方形中放置了8个形状、大小都相同的小长方形,则图中阴影部分的面积为 .
19.小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm的小正方形,则这个小长方形的面积为 cm2.
20.小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款 元.
三.解答题
21.北京2008年奥运会跳水决赛的门票价格如下表:
等 级 A B C
票价(元/张) 未知 未知 150
小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.
(1)若小聪购买1张A等票和7张B等票共需花费多少元?
(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为 张.(该小题直接写出答案,不必写出过程.)
22.某中学组织八年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满.已知45座客车,60座客车日租金分别为220元/辆.300元/辆.
(1)设原计划租45座客车x辆,八年级有y人,则y= (用含x的式子表示);若租用60座客车,则y= (用含x的式子表示);
(2)八年级学生有多少人?
(3)若租用这两种型号的客车,且要使每个同学都有座位,每辆客车恰好坐满.设租45座客车x辆,租60座客车y辆,问有几种租车方案?
(4)设租车费用为w元,问怎样租车更合算?
23.列方程或方程组解应用题:
病毒无情,人间有爱.全国医务人员在党中央的号召下,面对疫情,主动请缨,前往湖北支援.北京市属医院首批援助队伍除领队外共135名医务人员,负责5个针对普通感染者的病区和1个针对危重感染者的病区.如果知道针对普通感染者的每个病区和针对危重感染者的每个病区配备医务人员的比例为1:4.请你计算北京市属医院首批援助队伍中负责普通感染者病区和负责危重感染者病区的医务人员各有多少人.
24.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的15%,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的40%.问:
(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?
(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?
25.某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:
电视机型号 甲 乙
批发价(元/台) 1500 2500
零售价(元/台) 2025 3640
若商场购进甲、乙两种型号的电视机共50台,用去9万元.
(1)求商场购进甲、乙型号的电视机各多少台?
(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?
26.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答下列问题:
(1)一个水瓶与一个水杯分别是多少元?(请列方程解应用题)
(2)为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和12个水杯,请问选择哪家商场购买更合算,并说明理由(水瓶和水杯必须在同一家购买).
27.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?
28.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:
(1)甲、乙两组单独工作一天,商店应各付多少元?
(2)已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店所付费用较少?
答案提示
1.A.2.D.3.B.4.A.5.D.6.B.7.B.8.B.9.A.10.B.11.D.12.B.
13..14..15..
16..17..18.79.19.60.20.8.
21.解:(1)设购买1张A等票需要x元,1张B等票需花费y元,根据题意可得:
,
解得:,
故500+7×300=2600(元),
答:小聪购买1张A等票和7张B等票共需花费2600元;
(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为8或9或10张.
故答案为:8或9或10.
22.解:(1)设原计划租45座客车x辆,七年级共有学生y人,则y=45x+15;
若租用60座客车,则y=60(x﹣1),
故答案为:45x+15;60(x﹣1);
(2)由题意可得方程组,
解得:,
答:八年级共有学生240人.
(3)设租用45座客车x辆,60座客车y辆,
依题意得45x+60y=240,
即3x+4y=16,
其非负整数解有两组为:和,
故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆.
(4)由(3)可知,当x=0,y=4时,租车费用w=300×4=1200(元);
当x=4,y=1时,租车费用w=220×4+300×1=1180(元);
∵1180<1200,
∴同时租用45座客车4辆和60座客车1辆更省钱.
23.解:设负责普通感染者病区医务人员有x人,负责危重感染者病区的医务人员有y人.
依题意,得:,
解得:.
答:北京市属医院首批援助队伍中负责普通感染者病区医务人员有75人,负责危重感染者病区的医务人员有60人.
24.解:(1)设公司第一次改装了y辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为x.
依题意得方程组:,
化简得:(100﹣y)=(100﹣2y),
解得:,
20+20=40(辆).
答:公司共改装了40辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降了40%.
(2)设一次性改装后,m天可以收回成本,则:
100×80×40%×m=4000×100,
解得:m=125.
答:125天后就可以从节省的燃料费中收回成本.
25.解:(1)设商场购进甲型号电视机x台,乙型号电视机y台,则
.
解得.
答:商场购进甲型号电视机35台,乙型号电视机15台;
(2)设甲种型号电视机打a折销售,
依题意得:15×(3640×0.75﹣2500)+35×(2025×0.1a﹣1500)=(15×2500+35×1500)×8.5%
解得a=8
答:甲种型号电视机打8折销售.
26.解:(1)设一个水瓶与一个水杯分别是x元y元,根据题意,得
解得
答:一个水瓶与一个水杯分别是40元和8元;
(2)甲商场所需费用为:
(40×5+8×12)×80%=236.8(元)
乙商场所需费用为:
5×40+(12﹣5×2)×8=216(元)
236.8>216,
所以选择乙商场购买更合算.
27.解:设每个长方形的长为xmm,宽为 ymm,由题意,得
,
解得:.
答:小长方形的长为10mm,宽为6mm.
28.解:(1)设甲单独工作一天需要x元,乙单独工作一天商店需付y元,
由题意得,,
解得:.
答:甲单独工作一天需要300元,乙单独工作一天商店需付140元;
(2)甲单独完成需付:300×12=3600(元),
乙单独完成需付:140×24=3360(元).
答:选择乙组商店所付费用较少.