华东师大版九下第27章《圆》
高分突破压轴专练(一)
1.如图,△ABC中,BC=AC=10,以BC为直径作⊙O交AB于点D,交AC于点G;DF⊥AC于点F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)若,求CF的值.
2.如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.
(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.
(2)连接BF,DF,设OB与EF交于点P,
①求证:PE=PF.
②若DF=EF,求∠BAC的度数.
3.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:ED平分∠BEP.
4.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.
(1)求证:∠BCO=∠D;
(2)若CD=,AE=2,求⊙O的半径.
5.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
6.如图,以△ABC的边AB为直径作⊙O,与BC交于点D,点E是弧BD的中点,连接AE交BC于点F,∠ACB=2∠BAE.
(1)求证:AC是⊙O的切线;
(2)若sinB=,BD=5,求BF的长.
7.如图所示,在边长为4正方形OABC中,OB为对角线,过点O作OB的垂线.以点O为圆心,r为半径作圆,过点C做⊙O的两条切线分别交OB垂线、BO延长线于点D、E,CD、CE分别切⊙O于点P、Q,连接AE.
(1)请先在一个等腰直角三角形内探究tan22.5°的值;
(2)求证:
①DO=OE;
②AE=CD,且AE⊥CD.
(3)当OA=OD时:
①求∠AEC的度数;
②求r的值.
8.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线l与⊙O相交于点E,F时,若∠DAE=18°,求∠BAF的大小.
9.已知⊙O过点D(4,3),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.
10.(1)如图1,AD、BC相交于点O,OA=OC,∠OBD=∠ODB.求证:AB=CD.
(2)如图2,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD=,求∠BAC的度数.
参考答案
1.(1)证明:连接OD,
∵BC=AC,
∴∠ABC=∠A,
∵BO=DO,
∴∠ABC=∠BDO,
∴∠A=∠BDO,
∴DO∥AC,
又∵EF⊥AC,
∴∠EDO=∠EFC=90°,
∴OD⊥EF,
∵OD是⊙O半径,
∴EF是⊙O的切线;
(2)解:∵BC=10,
∴OD=OC=5
在Rt△EDO中,
∵,
∴,,
∴,
∵OD∥AC,
∴△EDO∽△EFC,
∴,
∴,
∴FC=9.
2.(1)解:∵OE⊥AB,∠BAC=30°,OA=1,
∴∠AOE=60°,OE=OA=,AE=EB=OE=,
∵AC是直径,
∴∠ABC=90°,
∴∠C=60°,
∵OC=OB,
∴△OCB是等边三角形,
∵OF=FC,
∴BF⊥AC,
∴∠AFB=90°,
∵AE=EB,
∴EF=AB=.
(2)①证明:过点F作FG⊥AB于G,交OB于H,连接EH.
∵∠FGA=∠ABC=90°,
∴FG∥BC,
∴△OFH∽△OCB,
∴==,同理=,
∴FH=OE,
∵OE⊥AB.FH⊥AB,
∴OE∥FH,
∴四边形OEHF是平行四边形,
∴PE=PF.
②∵OE∥FG∥BC,
∴==1,
∴EG=GB,
∴EF=FB,
∵DF=EF,
∴DF=BF,
∵DO=OB,
∴FO⊥BD,
∴∠AOB=90°,
∵OA=OB,
∴△AOB是等腰直角三角形,
∴∠BAC=45°.
3.证明:(1)连接OE,如图,
∵CD为直径,
∴∠CED=90°,即∠CEO+∠OED=90°,
∵OC=OE,
∴∠C=∠CEO,
∴∠C+∠OED=90°,
∵∠PED=∠C.
∴∠PED+∠OED=90°,即∠OEP=90°,
∴OE⊥PE,
∴PE是⊙O的切线;
(2)∵AB为直径,
∴∠AEB=90°,
而AE∥CD,
∴∠EFD=90°,
∴∠FED+∠EDF=90°,
而∠C+∠EDC=90°,
∴∠FED=∠C,
∴∠PED=∠FED,
∴ED平分∠BEP.
4.(1)证明:如图.
∵OC=OB,
∴∠BCO=∠B.
∵∠B=∠D,
∴∠BCO=∠D;
(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,
∴CE=CD=×4=2,
在Rt△OCE中,OC2=CE2+OE2,
设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,
∴r2=(2)2+(r﹣2)2,
解得:r=3,
∴⊙O的半径为3.
5.(1)证明:连接OM,如图1,
∵BM是∠ABC的平分线,
∴∠OBM=∠CBM,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠CBM=∠OMB,
∴OM∥BC,
∵AB=AC,AE是∠BAC的平分线,
∴AE⊥BC,
∴OM⊥AE,
∴AE为⊙O的切线;
(2)解:设⊙O的半径为r,
∵AB=AC=6,AE是∠BAC的平分线,
∴BE=CE=BC=2,
∵OM∥BE,
∴△AOM∽△ABE,
∴=,即=,解得r=,
即设⊙O的半径为;
(3)解:作OH⊥BE于H,如图,
∵OM⊥EM,ME⊥BE,
∴四边形OHEM为矩形,
∴HE=OM=,
∴BH=BE﹣HE=2﹣=,
∵OH⊥BG,
∴BH=HG=,
∴BG=2BH=1.
6.(1)证明:连接AD,如图1所示.
∵E是弧BD的中点,
∴,
∴∠1=∠2.
∴∠BAD=2∠1.
∵∠ACB=2∠1,
∴∠C=∠BAD.
∵AB为⊙O直径,
∴∠ADB=∠ADC=90°.
∴∠DAC+∠C=90°.
∵∠C=∠BAD,
∴∠DAC+∠BAD=90°.
∴∠BAC=90°.
即AB⊥AC.
又∵AC过半径外端,
∴AC是⊙O的切线.
(2)解:过点F作FG⊥AB于点G.如图2所示:
在Rt△ABD中,∠ADB=90°,,
设AD=2m,则AB=3m,
由勾股定理得:BD==m.
∵BD=5,
∴m=.
∴AD=,AB=.
∵∠1=∠2,∠ADB=90°,
∴FG=FD.
设BF=x,则FG=FD=5﹣x.
在Rt△BGF中,∠BGF=90°,,
∴.
解得:=3.
∴BF=3.
7.解:(1)如图1,△GMN是等腰直角三角形.
则有∠M=90°即GM⊥MN,MG=MN,∠MGN=∠MNG=45°.
过点N作NF平分∠MNG,交GM于点F,过点F作FH⊥NG于H.
∵NF平分∠MNG,FH⊥NG,FM⊥MN,
∴∠MNF=∠MNG=22.5°,FM=FH.
∵FH⊥NG即∠FHG=90°,∠G=45°,
∴sinG==.
∴GF=FH.
∴GF=FM.
∴MN=MG=MF+FG=MF+FM=(+1)FM.
在Rt△FMN中,
tan∠FNM=tan22.5°====﹣1.
∴tan22.5°=﹣1.
(2)①如图2,
∵四边形OABC是正方形,
∴OA=OC,∠AOB=∠BOC=45°.
∴∠EOC=180°﹣∠BOC=135°.
∵OD⊥OB即∠DOB=90°,
∴∠DOC=∠DOB+∠BOC=135°.
∴∠DOC=∠EOC.
∵CD、CE分别与⊙O相切于P、Q,
∴∠PCO=∠QCO.
在△DOC和△EOC中,
.
∴△DOC≌△EOC(ASA).
∴OD=OE.
②∵∠AOB=45°,
∴∠AOE=135°.
∴∠AOE=∠DOC.
在△AOE和△COD中,
.
∴△AOE≌△COD(SAS).
∴AE=CD,∠AEO=∠CDO.
∵∠DOB=90°,∴∠KDO+∠DKO=90°.
∴∠AEO+∠DKO=90°.
∴∠KRE=90°.
∴AE⊥CD.
(3)①∵OA=OD,OA=OC,OD=OE,
∴OA=OD=OE=OC.
∴点A、D、E、C在以点O为圆心,OA为半径的圆上.
∴根据圆周角定理可得∠AEC=∠AOC=45°.
∴∠AEC的度数为45°.
②连接OQ,如图3.
∵OC=OE,∴∠OEC=∠OCE.
∵∠BOC=∠OEC+∠OCE=2∠OEC=45°,
∴∠OEC=22.5°
∵CE与⊙O相切于点Q,
∴OQ⊥EC,即∠OQE=90°.
在Rt△OQE中,
∵∠OQE=90°,
∴tan∠OEQ=tan22.5°==﹣1.
∵OQ=r,
∴QE==(+1)r.
∵∠OQE=90°,
∴OQ2+QE2=OE2.
∵OQ=r,QE=(+1)r,OE=4,
∴r2+[(+1)r]2=(4)2.
整理得(4+2)r2=32.
解得:r=2.
∴r的值为2.
8.解:(1)连接OC、
∵l是⊙O的切线,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC=30°,
∵OA=OC,
∴∠OAC=∠OCA=30°,
(2)连接BE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠AED+∠BEF=90°,
∵∠AED+∠DAE=90°,
∴∠BEF=∠DAE=18°,
∵,
∴∠BAF=∠BEF=18°
9.解:(1)点D(4,3)在⊙O上,
∴⊙O的半径r=OD=5;
如图,连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,
∴∠HAO=∠OHQ,
∴sin∠HAO=sin∠OHQ==;
(2)解:不变.
如图,设点D关于x轴的对称点为H,连接HD交OP于Q,OH交BC于K,则HD⊥OP,
又DE=DF,
∴DH平分∠BDC,
∴=.
∴连接OH,则OH⊥BC,
在Rt△OKG与Rt△OHQ中,
∵∠OKG=∠OEH=90°,∠HOG=∠HOG,
∴∠CGO=∠OHQ,
∴sin∠CGO=sin∠OHQ==,
所以不变.
10.(1)证明:∵∠OBD=∠ODB,
∴OB=OD,
在△AOB与△COD中,,
∴△AOB≌△COD(SAS),
∴AB=CD;
(2)解:连接OC,如图所示:
∵CD与⊙O相切,
∴OC⊥CD,
∵OA=OC,OA=1,
∴OC=1,
∴CD===1,
∴CD=OC,
∴△OCD为等腰直角三角形,
∴∠COB=45°,
∴∠BAC=∠COB=22.5°.