9.2 多项式的因式分解-2021春苏科版七年级数学下册课件(共22张PPT)

文档属性

名称 9.2 多项式的因式分解-2021春苏科版七年级数学下册课件(共22张PPT)
格式 pptx
文件大小 538.8KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-01-11 13:38:55

图片预览

文档简介

第九章 整式乘法与因式分解
二、多项式的因式分解
教学新知
用完全平方公式分解因式:
a2+2ab+b2= (a+b)2,
a2-2ab+b2= (a-b)2.
用平方差公式分解因式:
(a+b)(a-b)=a2-b2.
知识要点
2.会用提取公因式法进行因式分解,感受因式分解在简化计算和解方程中的作用。
1.理解和体会因式分解的意义。
3.掌握用平方差公式分解因式的方法,掌握提公因式法、平方差公式分解因式的综合运用。
4.理解完全平方公式的意义,弄清公式的形式和特征,会运用完全平方公式分解因式。
知识梳理
知识点1:因式分解的定义
【例】下列由左到右的变形,是因式分解的是(  )
A.a(x+y)=ax+ay   B.10a2-5a=5a(2a-1)
C.x2-4x+5=(x-2)2+1 D.t2-s2+2ts=(t-s)(t+s)+2ts
【讲解】根据因式分解就是把多项式化成几个整式积的形式,对各选项分析判断后利用排除法求解.
知识梳理
解:A.是整式的乘法,故本选项错误;B.10a2-5a=5a(2a-1),正确;C.右边不是积的形式,故本选项错误;D.右边不是积的形式,故本选项错误.故选B.
【方法小结】因式分解与整式的乘法是互逆运算,因式分解是的结果是几个整式的积的形式,可用多项式的乘法检验.
【小练习】
下列从左到右属于因式分解的是(  )
A.(a+3)(a-3)=a2-9   B.x2-2x+3=(x-1)2+2
C.x2-6x+9=(x-3)2       D.a2-5a-6=(a-2)(a-3)
C
知识梳理
知识点2:公因式
【例】指出下列多项式的公因式: (1)3a2y?3ay+6y
(2) ??27a2b3+36a3b2+9a2b
?
【讲解】(1)中系数为3、—3、6的最大公约数是3,所以公因式的系数为3,有相同字母y,并且y的最低次数是1,所以公因式为3y.(2)此多项式的第一项是“—”号,应将“—”提取变为—(27a2b3—36a3b2—9a2b),多项式27a2b3—36a3b2—9a2b各项系数的最大公约数为9,且a的最低次幂为2,b的最低次幂是1,所以这个多项式的公因式为—9a2b.
知识梳理
解:(1)3y;(2)—9a2b
【方法小结】找准公因式要“五看”即:一看系数:若各项系数都是整数,应提取各项的系数的最大公约数;二看字母:公因式的字母是各项相同的字母;三看字母的次数:各相同字母的指数取次数最低的;四看整体:如果多项式中含有相同的多项式,应将其看作整体,不要拆开;五看首项符号,若多项式中首项是“—”号,则公因式符号为负数.
【小练习】
1. 多项式36a2bc﹣48ab2c+24abc2的公因式是(  )
A.12a2b2c2 B.6abc C.12abc D.36a2b2c2
知识梳理
2. 观察下列各式:①2a+b和a+b;②5m(a﹣b)和﹣a+b;③3(a+b)和﹣a﹣b;④x2﹣y2和x2+y2;其中有公因式的是(  )
A.①② B.②③ C.③④ D.①④
3. 多项式8xmyn﹣1﹣12x3myn的公因式是 。
【参考答案】1. C  2. B  3. 4xmyn﹣1
知识梳理
知识点3: 提公因式法分解因式.
【例】.因式分解
(1)a2b﹣5ab+9b   (2)x(x﹣y)2﹣y(y﹣x)2.
【讲解】 (1)直接提取公因式b即可;
(2)由于(x﹣y)2=(y﹣x)2,先直接提取公因式(x﹣y)2,再整理即可.解:(1)a2b﹣5ab+9b=b(a2﹣5a+9);
(2)x(x﹣y)2﹣y(y﹣x)2=(x﹣y)(x﹣y)2=(x﹣y)3.
【方法小结】找出公因式,再分解,第(2)题转化为相同底数是求解的关键
知识梳理
【小练习】
1. 下列多项式能用提公因式法分解的是 ( ).
A.4a2+9b2 B.4a2-9b2
C.2a2-ab D.4a2-12ab+9b2
2. (1)计算:a(a﹣2);(2)分解分式:m2﹣3m.
3. 阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]
=(1+x)2[1+x]
知识梳理
=(1+x)3
(1)上述分解因式的方法是   法,共应用了   次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,则需要应用上述方法   次,分解因式后的结果是   .
(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.
知识梳理
【参考答案】1. C  2. (1)a(a﹣2)=a2﹣2a.(2)m2﹣3m=m(m﹣3)  3. 解:(1)根据已知可以直接得出答案:提取公因式,2;(2)2015,(1+x)2016;
(3)解:原式=(1+x)[1+x+x(1+x)+…+x(1+x)(n﹣1)]=(1+x)2[1+x+x(1+x)x(1+x)(n﹣2)]=(1+x)n+1.
知识点梳理
知识点:平方差公式分解因式.
知识梳理
【例】把下列各式因式分解:(1)
(2)
【讲解】此题中两项都可以表示成平方的形式,多项式是二项式且前面的符号相反,应考虑用平方差公式来分解
(1)


知识梳理
(2)



=(24a+2b)(2a+24b)
=4(12a+b)(a+12b)
【方法小结】掌握平方差公式的特点,注意公式中的字母具有普遍性,可以只表示一个数,也可以表示一个单项式或多项式.学习中,还要有“整体”、“代换”等思想.同时,有些多项式还要先做适当变形,使它符合公式特点后再运用公式.
知识梳理
【小练习】
1. 下列多项式中能用平方差公式分解因式的是(  )
A.a2+(-b)2 B.5m2-20mn  C.-x2-y2 D.-x2+9
2. 计算:1﹣4a2=   
3. 把下列各式分解因式:
(1)49????2-009 ????2
?
(2) ????2????4 - 116
?
(3) (2a +b)2-(a -2b)2
知识梳理
【参考答案】1. D 2. (﹣1﹣2a)(2a﹣1) 3. (1)(23????++0.3n)
(23????-0.3n)

?
(2)(????????2+14 )(????????2-14)
?
(3)(3a -b )(a +3b)
?
课堂练习
1.因式分解4﹣4a+a2,正确的是(  )
A.4(1﹣a)+a2 B.(2﹣a)2 C.(2﹣a)(2+a)
D.(2+a)2
2. 若多项式x2+mx+4能用完全平方公式分解因式,则m的值可以是(  )
A.4 B.﹣4 C.±2 D.±4
B
D
课堂练习
3. 计算:4x2﹣9y2= _____________________.
4. 一个正方形的边长增加了3cm,面积相应增加了39cm2,则原来这个正方形的边长为   cm.
5
(2x+3y)(2x﹣3y)
5. 简便计算:
(1)
(2)
原式
原式
课堂练习
参考答案:(1)6m2n﹣15n2m+30m2n2=3mn(2m﹣5n+10mn)
(2)x(x﹣y)2﹣y(x﹣y)=(x﹣y)(x2﹣xy﹣y)
(3)
(4)
6.把下列各式分解因式:(1)6m2n﹣15n2m+30m2n2;
(2)x(x﹣y)2﹣y(x﹣y);(3)15(a-b)2-3y(b-a); (4)(m+n)(x-y)-(m+n)(x+y).
课后习题
1. 在下列多项式中,没有公因式可提取的是(  )
A.3x-4y B.3x+4xy C.4x2-3xy D.4x2+3x2y
2. 分解8a3b2﹣12ab3c时应提取的公因式是(  )
A.2ab2 B.4ab C.ab2 D.4ab2
A
D
3. 多项式24ab2-32a2b提出公因式是 .
4. 若m、n互为相反数,则5m+5n-5= .
8ab
-5
课后习题
5. 分解分式:(1)m2﹣3m;(2)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(3)4ab﹣a2 ;(4)(3x+2y+1)2﹣(3x+2y﹣1)(3x+2y+1).
参考答案:(1)m(m﹣3), (2)2x(a﹣b), (3)a(4b﹣a),
(4)2(3x+2y+1) 
课后习题
6. 父亲今年x岁,儿子今年y岁,父亲比儿子大26岁,并且x2-xy=1040,请你求一求父亲和儿子今年各多少岁.
7. 证明:32016-32015-32014能被15整除.
参考答案:因为x2-xy=1040,所以x(x-y)=l040.所以26x=1040.所以x=40,y=14.所以父亲今年40岁,儿子今年14岁。
参考答案: 32016-32015-32014=32014×32-32014×3-32014=32014×(32-3-1)=32014×5=32013×3×5=32013×15,所以一定能被15整除.