《圆锥的体积》
教学内容:教科书第33页例二和相关的内容。
教学目标:
1.使学生理解和掌握圆锥体积的计算方法,并能运用公式解决简单的实际问题。
2.使学生进一步理解圆锥与圆柱的联系,培养学生的推理思想。
重点:掌握圆锥体积的计算公式,能利用公式解决相关的实际问题。
难点:理解圆锥和圆柱之间的联系。
学生准备:等底等高的圆柱和圆锥形容器各一个、水。
一、复习
1.圆柱和圆锥各有什么特征?
生:底面,侧面,高和顶点。
2.圆柱体积的计算公式是什么?
生:圆柱的体积=底面积X高
二、问题情境导入
1.出示圆锥形小麦堆的图片
师:只学过圆柱的体积计算,圆锥的体积怎样计算?还没学过怎么办呢?你有办法知道圆锥的体积吗(即:板书圆锥的体积)
2.引导学生独立思考,提出猜测。
老师:你们觉得圆锥的体积可能与哪种图形的体积有关呢?
学生:圆柱的体积。
老师:圆锥的体积和圆柱的体积之间会有什么样的关系呢?(等底等高的圆柱的体积可能 是圆锥的3倍,4倍或其他)
三、动手操作(四人一小组)
1.让学生分小组先议一议,如何实验,再动手。
老师:用等底等高的圆锥往圆柱里倒水,看几次能倒满?
学生:每次都倒满,正好倒了三次。
老师:说明了什么?
学生:说明圆锥的体积是和它等底等高的圆柱的体积的1/3(圆锥的体积=圆柱的体积x 1/3)
老师:圆柱的体积等于什么?
学生:底面积x高
老师:圆锥的体积公式是什么?
学生:圆锥的体积=圆柱的体积x 1/3=底面积x高x 1/3
字母公式:V圆锥=1/3V圆柱=1/3Sh
2.总结结论。
等底等高的圆柱体积等于圆锥体积的3倍,也可以说圆锥的体积等于圆柱体积的1/3。
3.圆锥体积计算公式
师:圆锥的体积V=1/3sh
四、巩固练习
1.课本34页做一做的第一题
2.解决情景问题
让学生自己独立完成,集体纠正。
五、扩展延伸
有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件,要削去钢材多少立方厘米?
六、谈谈收获
1.圆锥的体积二圆柱体积X1/3二1/3X底面积X高
2.等底等高的圆柱的体积是圆锥体积的3倍,圆锥的体积是圆柱体积的1/3。