鲁教版七年级上册第六章-一次函数
复习检测
一、选择题
已知直线经过点,则a的值为
A.
B.
C.
D.
已知点,在函数的图象上,则与的大小关系是
A.
B.
C.
D.
无法确定
若函数是正比例函数,则k和b的值为
A.
,
B.
,
C.
,
D.
,
对于函数,下列结论正确的是
A.
它的图象与两坐标轴围成等腰直角三角形
B.
它的图象经过第一、二、三象限
C.
它的图象必经过点
D.
y的值随x值的增大而增大
一次函数的图象过点,,,则
A.
B.
C.
D.
将直线向上平移2个单位长度,所得到的直线解析式为
A.
B.
C.
D.
下列函数中,是一次函数的有??
A.
?
4个
B.
?
3个
C.
?
2个
D.
?
1个
下列关于一次函数的图象性质的说法中,不正确的是
A.
直线经过第一、二、四象限
B.
直线与x轴交点的坐标是
C.
y随x的增大而减小
D.
与坐标轴围成的三角形面积为4
已知一次函数与一次函数关于x轴对称,则m、n分别为
A.
,
B.
,
C.
,
D.
,
已知一次函数的图像与x轴y轴分别交于A、B两点,当的面积为2时,那么t的值是??
A.
B.
C.
D.
?
公式表示当重力为P时的物体作用在弹簧上时弹簧的长度,代表弹簧的初始长度,用厘米表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米表示.下面给出的四个公式中,表明这是一个长而软的弹簧的是
A.
B.
C.
D.
若点、在直线上,且,
则该直线所经过的象限是
A.
第一、二、三象限
B.
第一、二、四象限
C.
第二、三、四象限
D.
第一、三、四象限
已知在平面直角坐标系中,直线和直线分别交x轴于点A和点则下列直线中,与x轴的交点不在线段AB上的直线是???
?
A.
B.
C.
D.
二、填空题
如果,,三点在同一直线上,则______.
在平面直角坐标系中,O为坐标原点,点A坐标为,第一象限的动点,且则当时,P点的坐标为______.
函数是正比例函数,则常数k的值为______.
若一次函数为常数的图象经过点,则______.
已知一次函数,当时,y的取值范围是________.
一条直线经过点,且与直线平行,则这条直线的函数表达式为______________.
三、计算题
已知y与成正比例,当时,????
写出y与x之间的函数关系式;
与x之间是什么函数关系;
求时,y的值.
某地举办乒乓球比赛的费用元包括两部分:一部分是租用比赛场地等固定不变的费用元,另一部分费用与参加比赛的人数人成正比.当时,;当时,.
求y与x之间的函数关系式;
如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?
四、解答题
如图,直线分别与x轴,y轴相交于点B和点,与直线交于点,点M在直线OA上.
求直线AB的解析式;
求的面积;
是否存在点M,使的面积与的面积相等?若存在,直接写出点M的坐标;若不存在,说明理由.
某商场计划购进A、B两种新型节能灯共100盏,这两种灯的进价、售价如表所示:
类型
价格
进价元盏
售价元盏
?安装费用
A型
30
45
1000
B型
50
70
500
若设商场购进A型灯m盏,销售完这批灯所获利润为P,写出P与m之间的函数关系式.
若商场规定B型灯的进货数量不超过A型灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
某学校计划用2800元购进并安装x盏灯型或者B型,如果选择A型灯式合算,那么x的取值范围是多少?
答案
1.【答案】A
2.【答案】A
3.【答案】D
4.【答案】A
5.【答案】B
6.【答案】D
7.【答案】A
8.【答案】D
9.【答案】B
10.【答案】D
11.【答案】D
12.【答案】B
13.【答案】C
14.【答案】8
15.【答案】
16.【答案】1
17.【答案】3
18.【答案】
19.【答案】
20.【答案】解:与成正比例,设函数关系式为:,
把当时,代入得:,,
与x之间的函数关系式为:,
即函数解析式为:;
与x之间是一次函数关系;
当时,
.
当时,y的值为.
21.【答案】解:设,根据题意得:
解得:
则函数的解析式是:
在中
解得:;
则这次比赛最多可邀请138名运动员.
22.【答案】解:点在直线上,
,
,
,
直线经过,与,
解得
直线AB的解析式为:;
令,
得,
解得:,
,
,
的面积;
存在点M,使的面积与的面积相等,理由如下:
点,
,
,
的面积与的面积相等,
到y轴的距离点A的纵坐标2,
点M的横坐标为2或;
当M的横坐标为2时,
在中,当时,,则M的坐标是;
则M的坐标为.
当M的横坐标为时,
在中,当时,,则M的坐标是.
综上所述:点M的坐标为:或.
23.【答案】解:设商场销售完这批台灯可获利P元,
则,
,
,
即;
型台灯的进货数量不超过A型台灯数量的4倍,
,
,
,P随m的增大而减小,
时,P取得最大值,为元
答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
,;
且
的取值范围是.
第2页,共2页
第1页,共1页