双曲线概念及几何性质(Word解析版)

文档属性

名称 双曲线概念及几何性质(Word解析版)
格式 zip
文件大小 111.4KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-01-13 19:10:48

图片预览

文档简介

双曲线的概念与几何性质
一、知识梳理
1.双曲线的定义
平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:
(1)若a(3)若a>c时,则集合P为空集.
2.双曲线的标准方程和几何性质
标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)
图 形


范围
x≥a或x≤-a,y∈R
x∈R,y≤-a或y≥a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞)
实虚轴
线段A1A2叫做双曲线的实轴,它的长度|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长度|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
a,b,c的关系
c2=a2+b2
3.重要结论
1.过双曲线的一个焦点且与实轴垂直的弦的长为.
2.离心率e===.
3.等轴双曲线的渐近线互相垂直,离心率等于.
二、例题精讲
+
随堂训练
1.判断下列结论正误(在括号内打“√”或“×”)
(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.(  )
(2)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.(  )
(3)方程-=1(mn>0)表示焦点在x轴上的双曲线.(  )
(4)双曲线-=λ(m>0,n>0,λ≠0)的渐近线方程是±=0.(  )
(5)若双曲线-=1(a>0,b>0)与-=1(a>0,b>0)的离心率分别是e1,e2,则+=1(此条件中两条双曲线称为共轭双曲线).(  )
解析 (1)因为||MF1|-|MF2||=8=|F1F2|,表示的轨迹为两条射线.
(2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.
(3)当m>0,n>0时表示焦点在x轴上的双曲线,而m<0,n<0时则表示焦点在y轴上的双曲线.
答案 (1)× (2)× (3)× (4)√ (5)√
2.经过点A(3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________________.
解析 设双曲线方程为:x2-y2=λ(λ≠0),把点A(3,-1)代入,得λ=8,故所求双曲线方程为-=1.
答案 -=1
3.已知双曲线x2-=1上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于________.
解析 设双曲线的焦点为F1,F2,|PF1|=4,则||PF1|-|PF2||=2,故|PF2|=6或2,又双曲线上的点到焦点的距离的最小值为c-a=-1,故|PF2|=6.
答案 6
4.(2018·浙江卷)双曲线-y2=1的焦点坐标是(  )
A.(-,0),(,0)
B.(-2,0),(2,0)
C.(0,-),(0,)
D.(0,-2),(0,2)
解析 由题可知双曲线的焦点在x轴上,又c2=a2+b2=3+1=4,所以c=2,故焦点坐标为(-2,0),(2,0).
答案 B
5.(2017·全国Ⅲ卷)双曲线-=1(a>0)的一条渐近线方程为y=x,则a=________.
解析 由题意可得=,所以a=5.
答案 5
6.(2018·北京卷)若双曲线-=1(a>0)的离心率为,则a=________.
解析 由题意可得,=,即a2=16,又a>0,所以a=4.
答案 4
考点一 双曲线的定义及应用
【例1】
(1)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos
∠F1PF2=(  )
A.
B.
C.
D.
(2)(2019·济南调研)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为____________.
解析 (1)由x2-y2=2,知a=b=,c=2.由双曲线定义知,|PF1|-|PF2|=2a=2,又|PF1|=2|PF2|,
∴|PF1|=4,|PF2|=2,
在△PF1F2中,|F1F2|=2c=4,由余弦定理,得
cos
∠F1PF2==.
(2)如图所示,设动圆M与圆C1及圆C2分别外切于A和B.
根据两圆外切的条件,
得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|,
因为|MA|=|MB|,所以|MC1|-|AC1|=|MC2|-|BC2|,
即|MC2|-|MC1|=|BC2|-|AC1|=2,
所以点M到两定点C1,C2的距离的差是常数且小于|C1C2|=6.
又根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离大,与C1的距离小),
其中a=1,c=3,则b2=8.
故点M的轨迹方程为x2-=1(x≤-1).
答案 (1)C (2)x2-=1(x≤-1)
【训练1】
(1)已知双曲线C:-=1(a>0,b>0)的离心率为2,左、右焦点分别为F1,F2,点A在双曲线C上,若△AF1F2的周长为10a,则△AF1F2的面积为(  )
A.2a2
B.a2
C.30a2
D.15a2
(2)(2019·杭州质检)双曲线C的渐近线方程为y=±x,一个焦点为F(0,-),点A(,0),点P为双曲线第一象限内的点,则当点P的位置变化时,△PAF周长的最小值为(  )
A.8
B.10
C.4+3
D.3+3
解析 (1)由双曲线的对称性不妨设A在双曲线的右支上,由e==2,得c=2a,∴△AF1F2的周长为|AF1|+|AF2|+|F1F2|=|AF1|+|AF2|+4a,又△AF1F2的周长为10a,∴|AF1|+|AF2|=6a,又∵|AF1|-|AF2|=2a,
∴|AF1|=4a,|AF2|=2a,在△AF1F2中,|F1F2|=4a,
∴cos
∠F1AF2===.
又0<∠F1AF<π,∴sin
∠F1AF2=,
∴S△AF1F2=|AF1|·|AF2|·sin
∠F1AF2=×4a×2a×=a2.
(2)由已知得双曲线方程为-=1,设双曲线的另一个焦点为F′,则|PF|=|PF′|+4,△PAF的周长为|PF|+|PA|+|AF|=|PF′|+4+|PA|+3,当F′,P,A三点共线时,|PF′|+|PA|有最小值,为|AF′|=3,故△PAF的周长的最小值为10.
答案 (1)B (2)B
考点二 双曲线的标准方程
【例2】
(1)(2017·全国Ⅲ卷)已知双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为(  )
A.-=1
B.-=1
C.-=1
D.-=1
(2)(2018·天津卷)已知双曲线-=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为(  )
A.-=1
B.-=1
C.-=1
D.-=1
解析 (1)由题设知=,①
又由椭圆+=1与双曲线有公共焦点,
易知a2+b2=c2=9,②
由①②解得a=2,b=,则双曲线C的方程为-=1.
(2)由d1+d2=6,得双曲线的右焦点到渐近线的距离为3,所以b=3.因为双曲线-=1(a>0,b>0)的离心率为2,所以=2,所以=4,所以=4,解得a2=3,所以双曲线的方程为-=1.
答案 (1)B (2)C
规律方法 1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a,b,c的方程并求出a,b,c的值.
2.与双曲线-=1有相同渐近线时可设所求双曲线方程为-=λ(λ≠0).
【训练2】
(1)(2019·海南二模)已知双曲线C:-=1(a>0,b>0)过点(,),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C的标准方程是(  )
A.-y2=1
B.-=1
C.x2-=1
D.-=1
(2)已知双曲线的渐近线方程为2x±3y=0,且双曲线经过点P(,2),则双曲线的方程为________________.
解析 (1)由双曲线C:-=1(a>0,b>0)过点(,),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得解得
∴双曲线C的标准方程是x2-=1.
(2)由双曲线的渐近线方程为y=±x,
可设双曲线方程为-=λ(λ≠0).
因为双曲线过点P(,2),所以-=λ,λ=-,
故所求双曲线方程为-=1.
答案 (1)C (2)-=1
考点三 双曲线的性质
角度1 求双曲线的渐近线
【例3-1】
(2018·全国Ⅱ卷)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为(  )
A.y=±x
B.y=±x
C.y=±x
D.y=±x
解析 法一 由题意知,e==,所以c=a,所以b==a,即=,所以该双曲线的渐近线方程为y=±x=±x.
法二 由e===,得=,所以该双曲线的渐近线方程为y=±x=±x.
答案 A
角度2 求双曲线的离心率
【例3-2】
(1)(2018·全国Ⅲ卷)设F1,F2是双曲线C:-=1(a>0,b>0)的左、右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若|PF1|=|OP|,则C的离心率为(  )
A.
B.2
C.
D.
(2)(2018·泰安联考)已知双曲线C1:-=1(a>0,b>0),圆C2:x2+y2-2ax+a2=0,若双曲线C1的一条渐近线与圆C2有两个不同的交点,则双曲线C1的离心率的取值范围是(  )
A.
B.
C.(1,2)
D.(2,+∞)
解析 (1)不妨设一条渐近线的方程为y=x,则F2到y=x的距离d==b,在Rt△F2PO中,|F2O|=c,所以|PO|=a,所以|PF1|=a,又|F1O|=c,所以在△F1PO与Rt△F2PO中,根据余弦定理得cos∠POF1==-cos∠POF2=-,则3a2+c2-(a)2=0,得3a2=c2,所以e==.
(2)由双曲线方程可得其渐近线方程为y=±x,即bx±ay=0,圆C2:x2+y2-2ax+a2=0可化为(x-a)2+y2=a2,圆心C2的坐标为(a,0),半径r=a,由双曲线C1的一条渐近线与圆C2有两个不同的交点,得2b,即c2>4b2,又知b2=c2-a2,所以c2>4(c2-a2),即c21,所以双曲线C1的离心率的取值范围为.
答案 (1)C (2)A
角度3 与双曲线有关的范围(最值)问题
【例3-3】
已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·<0,则y0的取值范围是(  )
A.
B.
C.
D.
解析 因为F1(-,0),F2(,0),-y=1,所以·=(--x0,-y0)·(-x0,-y0)=x+y-3<0,即3y-1<0,解得-答案 A
【训练3】
(1)(2019·上海崇明区调研)在平面直角坐标系xOy中,双曲线C:-=1(a>0,b>0)的一条渐近线与圆(x-2)2+(y-1)2=1相切,则C的离心率为(  )
A.
B.
C.
D.
(2)已知焦点在x轴上的双曲线+=1,它的焦点到渐近线的距离的取值范围是________.
解析 (1)双曲线C的渐近线方程为by±ax=0,结合图形易知与圆相切的只可能是by-ax=0,又圆心坐标为(2,1),则=1,得3a=4b,
所以9a2=16b2=16(c2-a2),则e2=,
又e>1,故e=.
(2)对于焦点在x轴上的双曲线-=1(a>0,b>0),它的一个焦点(c,0)到渐近线bx-ay=0的距离为=b.本题中,双曲线+=1即-=1,其焦点在x轴上,则解得4答案 (1)B (2)(0,2)
三、课后练习
1.(2019·河南适应测试)已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,P是双曲线上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为,则双曲线的渐近线方程为(  )
A.y=±2x
B.y=±x
C.y=±x
D.y=±x
解析 不妨设P为双曲线右支上一点,则|PF1|>|PF2|,由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,所以|PF1|=4a,|PF2|=2a.又因为所以∠PF1F2为最小内角,故∠PF1F2=.
由余弦定理,可得=,即(a-c)2=0,所以c=a,则b=a,所以双曲线的渐近线方程为y=±x.
答案 D
2.已知点F为双曲线E:-=1(a>0,b>0)的右焦点,直线y=kx(k>0)与E交于不同象限内的M,N两点,若MF⊥NF,设∠MNF=β,且β∈,则该双曲线的离心率的取值范围是(  )
A.[,+]
B.[2,+1]
C.[2,+]
D.[,+1]
解析 如图,设左焦点为F′,连接MF′,NF′,令|MF|=r1,|MF′|=r2,则|NF|=|MF′|=r2,
由双曲线定义可知r2-r1=2a①,∵点M与点N关于原点对称,且MF⊥NF,∴|OM|=|ON|=|OF|=c,∴r+r=4c2②,
由①②得r1r2=2(c2-a2),又知S△MNF=2S△MOF,
∴r1r2=2·c2·sin
2β,∴c2-a2=c2·sin
2β,
∴e2=,又∵β∈,∴sin
2β∈,
∴e2=∈[2,(+1)2].
又e>1,∴e∈[,+1].
答案 D
3.(2018·北京卷)已知椭圆M:+=1(a>b>0),双曲线N:-=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为________;双曲线N的离心率为________.
解析 设椭圆的右焦点为F(c,0),双曲线N的渐近线与椭圆M在第一象限内的交点为A,
由题意可知A,由点A在椭圆M上得,+=1,∴b2c2+3a2c2=4a2b2,∵b2=a2-c2,∴(a2-c2)c2+3a2c2=4a2(a2-c2),∴4a4-8a2c2+c4=0,∴e-8e+4=0,∴e=4±2,∴e椭=+1(舍去)或
e椭=-1,∴椭圆M的离心率为-1.∵双曲线的渐近线过点A,∴渐近线方程为y=x,∴=,故双曲线的离心率e双==2.
答案 -1 2
4.已知椭圆C1的方程为+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.
解 (1)设双曲线C2的方程为-=1(a>0,b>0),
则a2=3,c2=4,再由a2+b2=c2,得b2=1.
故C2的方程为-y2=1.
(2)将y=kx+代入-y2=1,
得(1-3k2)x2-6kx-9=0.
由直线l与双曲线C2交于不同的两点,得
∴k2≠且k2<1.①
设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=-.
∴x1x2+y1y2=x1x2+(kx1+)(kx2+)
=(k2+1)x1x2+k(x1+x2)+2=.
又∵·>2,得x1x2+y1y2>2,
∴>2,即>0,解得<k2<3.②
由①②得<k2<1,
故k的取值范围为∪.
5.已知椭圆+=1与双曲线x2-=1的离心率分别为e1,e2,且有公共的焦点F1,F2,则4e-e=________,若P为两曲线的一个交点,则|PF1|·|PF2|=________.
解析 由题意得椭圆的半焦距满足c=4-m,双曲线的半焦距满足c=1+n,
又因为两曲线有相同的焦点,所以4-m=1+n,
即m+n=3,
则4e-e=4×-(1+n)=3-(m+n)=0.
不妨设F1,F2分别为两曲线的左、右焦点,点P为两曲线在第一象限的交点,
则解得
则|PF1|·|PF2|=3.
答案 0 3