人教版数学九年级上册25.1.1 随机事件 经典同步课件(共36张PPT)

文档属性

名称 人教版数学九年级上册25.1.1 随机事件 经典同步课件(共36张PPT)
格式 ppt
文件大小 2.0MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-01-13 20:35:56

图片预览

文档简介

摸到红牌的是幸运者哦!
试分析:“从一堆牌中任意抽一张抽到红牌”
这一事件的发生情况?
可能发生, 也可能不发生
必然发生
不可能发生

5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
(1)抽到的序号有几种可能的结果?
(2)抽到的序号小于6吗?
(3)抽到的序号会是0吗?
(4)抽到的序号会是1吗?

小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。请考虑以下问题,掷一次骰子,观察骰子向上的一面:
(1)可能出现哪些点数?
(2)出现的点数会是7吗?
(3)出现的点数大于0吗?
(4)出现的点数会是4吗?
随机事件

在一定条件下:
必然会发生的事件叫必然事件;
必然不会发生的事件叫不可能事件;
可能会发生,也可能不发生的事件叫不确定事件或随机事件.

必然事件,不可能事件,随机事件
将一小勺白糖放入一杯温水中,并用筷子不断的搅拌,白糖溶解。
测量某天的最低气温,结果为—350oc。
小强打开电视机,电视里正在播放广告。
互为倒数的两个数的积等于0。
不可能事件
必然事件
不可能事件
随机事件

用长为3cm、4cm、7cm的三条线段首尾顺次连结,构成一个三角形。
不可能事件
⑴度量三角形内角和,结果是360°.
⑵正常情况下水加热到100°C,就会沸腾.
⑶掷一个正面体的骰子,向上的一面点数为6.
⑷经过城市中某一有交通信号灯的路口,遇到红灯.
(5)某射击运动员射击一次,命中靶心.
(不可能事件)
(必然事件)
(随机事件)
(随机事件)
(随机事件)
练一练:
指出下列事件中哪些事件是必然事件,哪些事件是不可能事件,哪些事件是随机事件.
摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
(1)这个球是白球还是黑球?
(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?

一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
思考:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?
归 纳
如图,第一排表示各立方体盒子里黑、白棋的情况,请用第二排的语言来描述摸到白棋的可能性,并用线连起来。
0粒白棋
30粒黑棋
5粒白棋
25粒黑棋
15粒白棋
15粒黑棋
28粒白棋
2粒黑棋
30粒白棋
0粒黑棋
一定摸
到白棋
很可能摸
到白棋
可能摸
到白棋
不太可能
摸到白棋
不可能摸
到白棋

(1)一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?
(2)一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大?
(3)袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?
(4)已知地球表面陆地面积与海洋面积的比均为3:7。如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
小东和小红都想去看电影,但只有一张电影票,为了决定到底谁去看电影,他们各自想出了自己的方法:
小东的方法是:任意掷一枚均匀的硬币,如果正面朝上,那么小东去;如果反面朝上,那么小红去。
小红的方法是:拿一个均匀的小立方体(每一个面上分别标有1,2,3,4,5,6),任意掷出小立方体后朝上的数字是6,则小东去,如果朝上的数字不是6,则小红去。
他们想出的方法公平吗?对谁有利?简要说明你的理由。
可能的结果有1,2,3,4,5等5种,由于纸签的形状,大小相同,又是随机抽取的,所以我们可以认为:每个号被抽到的
可能性相等,都是
试验1.从分别标有1.2.3.4.5号的5根纸签中随机抽取一根,抽出的签上的标号有几种可能?每一种抽取的可能性大小相等么?
试验2.抛掷一个骰子,它落地时向上的数有几种可能?分别是什么?发生的可能性大小一样么?是多少?
6种等可能的结果:1,2,3,4,5,6.由于骰子的构造相同,质地均匀,又是随机掷出的,所以,每种结果的可能性相等,都是
归纳
一般地,对于一个随机事件A,把刻画其发生可能性大小的数值,称之为随机事件A发生的概率。记为P(A)
共同特征: 1.每一次试验中,可能出现的结果只有有限个。2. 每一次试验中,各种结果出现的可能性相等。
概率从数量上刻画了一个随机事件发生的可能性的大小。

P(抽到1号)=1/5
P(抽到偶数号)=2/5
1
例如,在上面抽签试验中,“抽到1号”这个事件包含 种可能结果,在全部 种可能的结果中所占的比为 ,于是这个事件的概率为
5
1/5
2
4
2
2/5
“抽到偶数号”这个事件包含抽到( )和( )这( )种可能结果,在全部5种可能结果中所占的比为( ),于是这个事件的概率
对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果数在全部可能结果数中所占的比,分析出事件发生的概率

一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率 .

等可能事件概率的求法

通过对试验结果及事件本身的分析,我们可以求出相应事件的概率。记随机事件A在n次试验中发生了m次,那么在 中,由m和n的含义可知0≤m≤n, 进而有0≤ ≤1,因此
   0≤P(A) ≤1.

1、当A是必然发生的事件时,P(A)是多少 ?
2、当A是不可能发生的事件时,P(A)是多少?
0
1
事件发生的可能性越来越大
事件发生的可能性越来越小
不可能事件
必然事件
概率的值

不可能事件,必然事件与随机事件的关系
必然事件发生的可能性是
100%
,P(A)=1;
不可能事件发生的可能性是
0;
P(A)= 0;
3、不确定事件发生的可能性是大于0而小于1的.
即随机事件的概率为
由定义可知:
(1)概率反映了随机事件发生的可能性的大小。事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0;
(2)必然事件的概率为1,不可能事件的概率为0.因此 .
(3)随机事件的概率为

甲、乙、丙三人在玩一飞镖游戏,规定若飞镖掷在区域A上,则甲赢;若飞镖掷在区域B上,则乙赢;若飞镖掷在区域C上,则丙赢;请问这样的规定对三个人来说公平吗?(靶子是一个正三角形,点O是正三角形的中心)
O
A
B
C

一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区的机会是( )

有一个均匀的正二十面体,其中一个面标有“1”,两个面标有“2”,三个面标有“3”,四个面标有“4”,五个面标有“5”,其余的面标有“6”.随意将这个正二十面体掷出.
数字几朝上的机会最大?

例1.掷一枚骰子,观察向上的一面的点数,求下列事件的概率。
①点数为2.
P(点数为2)=
②点数为奇数。
P(点数为奇数)=
③点数大于2且小于5.

P(点数大于2且小于5)=

例1变式 掷1个质地均匀的正方体骰子,观察向上一面的点数.
(1)求掷得点数为2或4或6的概率;
(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率。
解:掷1个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A) ;
(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种。他第六次掷得点数2(记为事件B)有1种结果,因此P(B) .
.
1.明天下雨的概率为95%,那么下列说法错误的是( )
(A) 明天下雨的可能性较大
(B) 明天不下雨的可能性较小
(C) 明天有可能是晴天
(D) 明天不可能是晴天

 一、1袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则
P(摸到红球)= ;
P(摸到白球)= ;
P(摸到黄球)= 。
1

9
1

3
5

9
二、有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4。现将它们的背面朝上,从中任意摸到一张卡片,则:p (摸到1号卡片)= ;
p (摸到2号卡片)= ;
p (摸到3号卡片)= ;
p (摸到4号卡片)= ;
p (摸到奇数号卡片)= ;
P(摸到偶数号卡片) = .
1

5
2

5
1

5
1

5
2

5
3

5
1、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取1只,是二等品的概率为
_____。
2、一副扑克牌,从中任意抽出一张,求下列结果的概率:
① P(抽到红桃5)=____
②P(抽到大王或小王)=____
③P(抽到A)=____
④P(抽到方快)=____
3、如图,能自由转动的转盘中, A、B、C、D四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止
时, 指针指向B的概
率是_____,指向C或
D的概率是_____。
1、在分别写出1至20张小卡片中,随机抽出一张卡片,试求以下事件的概率.
⑴该卡片上的数字是2的倍数,也是5的倍数.
⑵该卡片上的数字是4的倍数,但不是3的倍数
⑶该卡片上的数不能写成一个整数的平方
⑷该卡片上的数字除去1和自身外,至少还有3个约数.
解: ⑴ ⑵
⑶ ⑷
一、精心选一选
1.有一道四选一的单项选择题,某同学用排除法排除了一个错误选项,再靠猜测从其余的选项中选择获得结果,则这个同学答对的概率是( )
二分之一 B.三分之一 C.四分之一 D.3

2.从标有1,2,3…,20的20张卡片中任意抽取一张,以下事件可能性最大的是( )
A.卡片上的数字是2 的倍数.
B.卡片上的数字是3的倍数.
C.卡片上的数字是4 的倍数.
D.卡片上的数字是5的倍数.
练习
B
A
二、耐心填一填
3.四张形状、大小、质地相同的卡片上分别画上圆、平行四边形、等边三角形、正方形,然后反扣在桌面上,洗匀后随机抽取一张,抽到轴对称图形的概率是( ),抽到中心对称图形的概率是( )。

3
4
3
4
4. 某班文艺委员小芳收集了班上同学喜爱传唱的七首歌曲,作为课前三分钟唱歌曲目:歌唱祖国,我和我的祖国,五星红旗,相信自己,隐形的翅膀,超越梦想,校园的早晨,她随机从中抽取一支歌,抽到“相信自己”这首歌的概率是( ).
1
7
课堂小结:
1、必然事件、不可能事件、随机事件的定义。
3、必然事件A,则P(A)=1;
  不可能事件B,则P(B)=0;
  随机事件C,则0<P(C)<1。
2、概率的定义及基本性质。
如果在一次实验中,有n种可能的结果,并且他们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
0≤m≤n,有0 ≤ m/n≤1
必然发生的事件
不可能发生的事件
随机事件
1.事件
确定事件
2.定义:在一定条件下,有可能发生也有可能不发生称为随机事件
特征:事先不能预料即具有不确定性。
3.随机事件发生的可能性是有大小的,不同 的随机事件发生的可能性的大小有可能不同。