2020-2021学年山东省聊城市冠县九年级(上)期末数学试卷 (Word版 含解析)

文档属性

名称 2020-2021学年山东省聊城市冠县九年级(上)期末数学试卷 (Word版 含解析)
格式 doc
文件大小 1.2MB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2021-01-15 05:33:30

图片预览

文档简介

2020-2021学年山东省聊城市冠县九年级第一学期期末数学试卷
一、选择题(共12小题).
1.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为(  )
A.(0,3) B.(0,2.5) C.(0,2) D.(0,1.5)
2.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是(  )
A.sinα=cosα B.tanC=2 C.sinβ=cosβ D.tanα=1
3.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是(  )
A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1
4.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为(  )
A. B.5 C. D.5
5.若抛物线y=ax2+2ax+4(a<0)上有A(﹣,y1),B(﹣,y2),C(,y3)三点,则y1,y2,y3的大小关系为(  )
A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y1
6.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=(  )
A.1:4 B.1:3 C.1:2 D.1:1
7.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为(  )
A.26米 B.28米 C.30米 D.46米
8.如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则的长为(  )
A. B. C.π D.2π
9.已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是(  )
A. B.
C. D.
10.若a,b是方程x2+2x﹣2016=0的两根,则a2+3a+b=(  )
A.2016 B.2015 C.2014 D.2012
11.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为(  )
A.2 B.3 C.4 D.﹣4
12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:
①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是(  )
A.①④ B.②④ C.①②③ D.①②③④
二.填空题(共6小题).
13.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是   .
14.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是   .
15.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为   .(结果保留π)
16.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为   .
17.已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为   .
18.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为   .
三、解答题(本大题共7个小题,共66分。解答要写出必要的文字说明、证明过程或演算步骤。)
19.(6分)根据要求解下列一元二次方程:
(1)x2+2x﹣3=0(配方法);
(2)(x+1)(x﹣2)=4(公式法).
20.(8分)已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.
(1)求证:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的长.
21.(10分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)
22.(10分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧的中点,连接CE交AB于点F,且BF=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,cosB=,求CE的长.
23.(10分)某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克
(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?
(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?
24.(10分)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积;
(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.
25.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
参考答案
一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)
1.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为(  )
A.(0,3) B.(0,2.5) C.(0,2) D.(0,1.5)
解:如图,连接BF交y轴于P,
∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(﹣4,4),(2,1),
∴点C的坐标为(0,4),点G的坐标为(0,1),
∴CG=3,
∵BC∥GF,
∴==,
∴GP=1,PC=2,
∴点P的坐标为(0,2),
故选:C.
2.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是(  )
A.sinα=cosα B.tanC=2 C.sinβ=cosβ D.tanα=1
解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,
∴sinα=cosα=,故A正确,
tanC==2,故B正确,
tanα=1,故D正确,
∵sinβ==,cosβ=,
∴sinβ≠cosβ,故C错误.
故选:C.
3.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是(  )
A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1
解:当k=0时,方程化为﹣3x﹣=0,解得x=﹣;
当k≠0时,△=(﹣3)2﹣4k?(﹣)≥0,解得k≥﹣1,
所以k的范围为k≥﹣1.
故选:C.
4.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为(  )
A. B.5 C. D.5
解:连接OC、OA,
∵∠ABC=30°,
∴∠AOC=60°,
∵AB为弦,点C为的中点,
∴OC⊥AB,
在Rt△OAE中,AE=,
∴AB=,
故选:D.
5.若抛物线y=ax2+2ax+4(a<0)上有A(﹣,y1),B(﹣,y2),C(,y3)三点,则y1,y2,y3的大小关系为(  )
A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y1
解:∵抛物线y=ax2+2ax+4(a<0),
∴对称轴为:x=,
∴当x<﹣1时,y随x的增大而增大,当x>﹣1时,y随x的增大而减小,
∵A(﹣,y1),B(﹣,y2),C(,y3)在抛物线上,,
∴y3<y1<y2,
故选:C.
6.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=(  )
A.1:4 B.1:3 C.1:2 D.1:1
解:在平行四边形ABCD中,AB∥DC,
则△DFE∽△BAE,
∴,
∵O为对角线的交点,
∴DO=BO,
又∵E为OD的中点,
∴DE=DB,
则DE:EB=1:3,
∴DF:AB=1:3,
∵DC=AB,
∴DF:DC=1:3,
∴DF:FC=1:2;
故选:C.
7.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为(  )
A.26米 B.28米 C.30米 D.46米
解:∵坝高12米,斜坡AB的坡度i=1:1.5,
∴AE=1.5BE=18米,
∵BC=10米,
∴AD=2AE+BC=2×18+10=46米,
故选:D.
8.如图,在Rt△ABC中,∠A=90°,BC=2,以BC的中点O为圆心⊙O分别与AB,AC相切于D,E两点,则的长为(  )
A. B. C.π D.2π
解:连接OE、OD,
设半径为r,
∵⊙O分别与AB,AC相切于D,E两点,
∴OE⊥AC,OD⊥AB,
∵O是BC的中点,
∴OD是中位线,
∴OD=AE=AC,
∴AC=2r,
同理可知:AB=2r,
∴AB=AC,
∴∠B=45°,
∵BC=2
∴由勾股定理可知AB=2,
∴r=1,
∴==
故选:B.
9.已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是(  )
A. B.
C. D.
解:二次函数y=ax2+bx+c的图象开口向下可知a<0,对称轴位于y轴左侧,a、b同号,即b<0.图象经过y轴正半可知c>0,根据对称轴和一个交点坐标用a表示出b,c,b=2a,c=﹣3a,
确定一次函数和反比例函数有2个交点,
由a<0,b<0可知,直线y=ax﹣2b经过一、二、四象限,
由c>0可知,反比例函数y=的图象经过第一、三象限,
故选:C.
10.若a,b是方程x2+2x﹣2016=0的两根,则a2+3a+b=(  )
A.2016 B.2015 C.2014 D.2012
解:∵a是方程x2+2x﹣2016=0的实数根,
∴a2+2a﹣2016=0,
∴a2=﹣2a+2016,
∴a2+3a+b=﹣2a+2016+3a+b=a+b+2016,
∵a、b是方程x2+2x﹣2016=0的两个实数根,
∴a+b=﹣2,
∴a2+3a+b=﹣2+2016=2014.
故选:C.
11.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为(  )
A.2 B.3 C.4 D.﹣4
解:根据反比例函数k的几何意义可知:△AOP的面积为,△BOP的面积为,
∴△AOB的面积为,
∴=2,
∴k1﹣k2=4,
故选:C.
12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:
①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.
其中正确的是(  )
A.①④ B.②④ C.①②③ D.①②③④
解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a<0,
∴ab<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以②正确;
∵x=1时,y<0,
∴a+b+c<0,
而c<0,
∴a+b+2c<0,所以③正确;
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a,
而x=﹣1时,y>0,即a﹣b+c>0,
∴a+2a+c>0,所以④错误.
故选:C.
二.填空题(本题共6个小题,每小题3分,共18分,只要求写出最后结果)
13.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是  .
解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,
∴∠EFC+∠AFB=90°,
∵∠B=90°,
∴∠BAF+∠AFB=90°,
∴∠EFC=∠BAF,
cos∠BAF==,
∴cos∠EFC=,
故答案为:.
14.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是  .
解:如图,∵点M,N分别是AB,AC的中点,
∴MN=BC,
∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,
连接BO并延长交⊙O于点C′,连接AC′,
∵BC′是⊙O的直径,
∴∠BAC′=90°.
∵∠ACB=45°,AB=5,
∴∠AC′B=45°,
∴BC′===5,
∴MN最大=.
故答案为:.
15.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 π .(结果保留π)
解:连接OE,如图,
∵以AD为直径的半圆O与BC相切于点E,
∴OD=2,OE⊥BC,
易得四边形OECD为正方形,
∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,
∴阴影部分的面积=×2×4﹣(4﹣π)=π.
故答案为π.
16.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为 (,2)或(﹣,2) .
解:依题意,可设P(x,2)或P(x,﹣2).
①当P的坐标是(x,2)时,将其代入y=x2﹣1,得
2=x2﹣1,
解得x=±,
此时P(,2)或(﹣,2);
②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得
﹣2=x2﹣1,即﹣1=x2
无解.
综上所述,符合条件的点P的坐标是(,2)或(﹣,2);
故答案是:(,2)或(﹣,2).
17.已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为 19或21或23 .
解:由方程x2﹣8x+15=0得:(x﹣3)(x﹣5)=0,
∴x﹣3=0或x﹣5=0,
解得:x=3或x=5,
当等腰三角形的三边长为9、9、3时,其周长为21;
当等腰三角形的三边长为9、9、5时,其周长为23;
当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去;
当等腰三角形的三边长为9、5、5时,其周长为19;
综上,该等腰三角形的周长为19或21或23,
故答案为:19或21或23.
18.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为 ﹣8 .
解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,
∴∠DBO+∠BOD=90°,
∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∴∠DBO=∠AOC,
∴△DBO∽△COA,
∴,
∵点A的坐标为(2,1),
∴AC=1,OC=2,
∴AO==,
∴,即BD=4,DO=2,
∴B(﹣2,4),
∵反比例函数y=的图象经过点B,
∴k的值为﹣2×4=﹣8.
故答案为:﹣8
三、解答题(本大题共7个小题,共66分。解答要写出必要的文字说明、证明过程或演算步骤。)
19.(6分)根据要求解下列一元二次方程:
(1)x2+2x﹣3=0(配方法);
(2)(x+1)(x﹣2)=4(公式法).
解:(1)x2+2x﹣3=0,
移项,得x2+2x=3,
配方,得x2+2x+1=3+1,
则(x+1)2=4,
x+1=±2,
x=±2﹣1,
x1=1,x2=﹣3;
(2)(x+1)(x﹣2)=4,
整理得,x2﹣x﹣6=0,
a=1,b=﹣1,c=﹣6,
△=b2﹣4ac=(﹣1)2﹣4×1×(﹣6)=25>0,
∴方程有两个不相等的实数根,
x==,
x1=3,x2=﹣2.
20.(8分)已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.
(1)求证:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的长.
【解答】(1)证明:∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=AC,
∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,
∴∠BAD=∠CDE
∴△ABD∽△DCE;
(2)解:由(1)证得△ABD∽△DCE,
∴=,
设CD=x,则BD=3﹣x,
∴=,
∴x=1或x=2,
∴DC=1或DC=2.
21.(10分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)
解:(1)过B作BG⊥DE于G,
Rt△ABH中,i=tan∠BAH==,
∴∠BAH=30°,
∴BH=AB=5;
(2)∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四边形BHEG是矩形.
∵由(1)得:BH=5,AH=5,
∴BG=AH+AE=5+15,
Rt△BGC中,∠CBG=45°,
∴CG=BG=5+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=AE=15.
∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.
答:宣传牌CD高约2.7米.
22.(10分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧的中点,连接CE交AB于点F,且BF=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,cosB=,求CE的长.
【解答】(1)答:BC与⊙O相切.
证明:连接AE,
∵AC是⊙O的直径
∴∠E=90°,
∴∠EAD+∠AFE=90°,
∵BF=BC,
∴∠BCE=∠BFC,
∵E为弧AD中点,
∴∠EAD=∠ACE,
∴∠BCE+∠ACE=90°,
∴AC⊥BC,
∵AC为直径,
∴BC是⊙O的切线.
(2)解:∵⊙O的半为2,
∴AC=4,
∵cosB==,
∴BC=3,AB=5,
∴BF=3,AF=5﹣3=2,
∵∠EAD=∠ACE,∠E=∠E,
∴△AEF∽△CEA,
∴==,
∴EC=2EA,
设EA=x,EC=2x,
由勾股定理得:x2+4x2=16,
x=(负数舍去),
即CE=.
23.(10分)某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克
(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?
(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?
解:(1)设每千克应涨价x元,由题意列方程得:
(5+x)(200﹣)=1500
解得:x=5或x=10,
答:为了使顾客得到实惠,那么每千克应涨价5元;
(2)设涨价x元时总利润为y,
则y=(5+x)(200﹣)
=﹣10x2+150x+1000
=﹣10(x2﹣15x)+1000
=﹣10(x﹣7.5)2+1562.5,
答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.
24.(10分)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积;
(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB?若存在,直接写出P点坐标;若不存在,说明理由.
解:(1)∵点A(﹣1,2)在双曲线y=上,
∴2=,
解得,k=﹣2,
∴反比例函数解析式为:y=﹣,
∴b==﹣1,
则点B的坐标为(2,﹣1),
∴,
解得,m=﹣1,n=1;
(2)对于y=﹣x+1,当x=0时,y=1,
∴点C的坐标为(0,1),
∵点D与点C关于x轴对称,
∴点D的坐标为(0,﹣1),
∴△ABD的面积=×2×3=3;
(3)对于y=﹣x+1,当y=0时,x=1,
∴直线y=﹣x+1与x轴的交点坐标为(0,1),
当点P在x轴上时,设点P的坐标为(a,0),
S△PAB=×|1﹣a|×2+×|1﹣a|×1=3,
解得,a=﹣1或3,
当点P在y轴上时,设点P的坐标为(0,b),
S△PAB=×|1﹣b|×2+×|1﹣b|×1=3,
解得,b=﹣1或3,
∴P点坐标为(﹣1,0)或(3,0)或(0,3).
25.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
解:
(1)设抛物线解析式为y=ax2+bx+c,
把A、B、C三点坐标代入可得,解得,
∴抛物线解析式为y=x2﹣3x﹣4;
(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,
∴PO=PC,此时P点即为满足条件的点,
∵C(0,﹣4),
∴D(0,﹣2),
∴P点纵坐标为﹣2,
代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,
∴存在满足条件的P点,其坐标为(,﹣2);
(3)∵点P在抛物线上,
∴可设P(t,t2﹣3t﹣4),
过P作PE⊥x轴于点E,交直线BC于点F,如图2,
∵B(4,0),C(0,﹣4),
∴直线BC解析式为y=x﹣4,
∴F(t,t﹣4),
∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,
∴S△PBC=S△PFC+S△PFB=PF?OE+PF?BE=PF?(OE+BE)=PF?OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,
∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,
∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.
同课章节目录