湘教版九年级上学期期末复习---第四章概率
参考答案与解析
一.选择题(共12小题,满分36分)
1.下列语句中描述的事件必然发生的是( A )
A.15个人中至少有两个人同月出生
B.一位同学在打篮球,投篮一次就投中
C.在1,2,3,4中任取两个数,它们的和大于7
D.掷一枚硬币,正面朝上
2.“翻开数学书,恰好翻到第16页”,这个事件是( A )
A.随机事件
B.必然事件
C.不可能事件
D.确定事件
3.下列说法正确的是( D )
A.可能性很小的事情是不可能发生的
B.可能性很大的事情是必然发生的
C.投掷一枚普通的正方体骰子,结果恰好是“3”是不可能发生的
D.投掷一枚普通的正方体骰子,掷得的数不是奇数便是偶数是必然发生的
4.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则摸到红球的可能性是( C )
A.
B.1
C.
D.
5.下列说法正确的是( C )
A.为保证“嫦娥五号”成功发射,对其零部件检查采取抽样方式
B.“守株待兔”是必然事件
C.有5个数都是6的整数倍,从中任选2个数都是偶数的概率是1
D.某彩票中心宣布,某期彩票的中奖率是70%,小明买了10张彩票,一定有7张中奖
6.下列四个图形从中任取一个是中心对称图形的概率是( A )
A.
B.1
C.
D.
7.一儿童行走在如图所示每个格子都是正方形的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( B )
A.
B.
C.
D.
解:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的;
故选:B.
8.某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
50
100
200
400
1000
“射中9环以上”的次数
15
41
78
158
320
800
“射中9环以上”的频率
0.75
0.82
0.78
0.79
0.80
0.80
根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率约是( D )
A.0.75
B.0.82
C.0.78
D.0.80
解:根据表格数据可知:
根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.80.
故选:D.
9.在利用正六面体骰子进行频率估计概率的实验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( D )
A.朝上的点数是5的概率
B.朝上的点数是奇数的概率
C.朝上的点数是大于2的概率
D.朝上的点数是3的倍数的概率
解:从统计图中可得该事件发生的可能性约在35%左右,
A的概率为1÷6×100%≈16.67%,
B的概率为3÷6×100%=50%,
C的概率为4÷6×100%≈66.67%,
D的概率为2÷6×100%≈33.33%,
即朝上的点数是3的倍数的概率与之最接近,
故选:D.
10.下列说法正确的是( D )
A.为了解一批灯泡的使用寿命,应采用普查的方式
B.抛掷两枚质量均匀的硬币,出现两面都是正面的概率为
C.某种彩票中奖的概率是,买1000张这种彩票一定会中奖
D.在一定条件下大量重复试验时,某个事件发生的频率稳定在0.6附近摆动,估计该事件发生的概率为0.6
11.一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是( A )
A.
B.
C.
D.
解:画树状图得:
∵x2+px+q=0有实数根,
∴△=b2﹣4ac=p2﹣4q≥0,
∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,﹣1),(2,﹣1),(2,1)共3种情况,
∴满足关于x的方程x2+px+q=0有实数根的概率是:=.
故选:A.
12.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.
两人轮流掷骰子,游戏规则如下:
两颗骰子朝上的面颜色相同时,李红是赢家;
两颗骰子朝上的面颜色相异时,王英是赢家.
已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是( D )
A.6
B.5
C.4
D.3
解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等
二.填空题(共6小题,满分18分)
13.下列事件中:①购买张彩票,中奖;②如果a为实数,那么|a|≥0;③水中捞月;④守株待兔.其中为必然事件的是 ② .(填序号)
14.如图,任意转动转盘1次,当转盘停止运动时,有下列事件:①指针落在标有5的区域内;②指针落在标有10的区域内;③指针落在标有奇数的区域内.请将这些事件的序号按事件发生的可能性从小到大的顺序依次排列为 ②①③ .
解:①指针落在标有5的区域内的概率是;
②指针落在标有10的区域内的概率是0;
③指针落在标有奇数的区域内的概率是;
将这些事件的序号按发生的可能性从小到大的顺序排列为:②①③,
15.一个不透明的袋子中装有12个小球,其中5个红球、7个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .
16.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是 .
解:∵∠ABC=90°,AC=50cm,AB=30cm,
∴由勾股定理得:BC=40cm,
∴S△ABC=AB?BC=×30×40=600(cm2),
∴S阴影=S正方形﹣4S△ABC=502﹣4×600=100(cm2),
∴小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是=,
故答案为:.
17.某批篮球的质量检验结果如下:
抽取的篮球数n
100
200
400
600
800
1000
1200
优等品的频数m
93
192
380
561
752
941
1128
优等品的频率
0.930
0.960
0.950
0.935
0.940
0.941
0.940
从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是 0.94 .(精确到0.01)
18.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为 .
解:∵系数a、b、c为绝对值不大于1的整数,
∴系数可能为0,1,﹣1;
画树状图得:
∵共有18种等可能的结果,该抛物线的“抛物线三角形”是等腰直角三角形的有:(1,0,﹣1),(﹣1,0,1),
∴该抛物线的“抛物线三角形”是等腰直角三角形的概率为:=.
故答案为:.
三.解答题(共8题,满分66分)
19.(满分6分)在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.
(1)从口袋中任意取出一个球,是一个白球;
(2)从口袋中一次任取5个球,全是蓝球;
(3)从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.
解:(1)从口袋中任意取出一个球,可能是一个白球、一个红球也可能是一个蓝球,
∴从口袋中任意取出一个球,是一个白球是随机事件,即不确定事件;
(2)口袋中只有3个蓝球,
∴从口袋中一次任取5个球,全是蓝球是不可能事件;
(3)从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了是必然事件.
20.(满分6分)判断下列说法是否正确,并说明理由.
(1)“从布袋中取出一只红球的概率是1”,这句话的意思是说取出一个红球的可能性很大.
(2)在医院里看病注射青霉素时,说明书上说发生过敏的概率大约为0.1%,小明认为这个概率很小,一定不会发生在自己的身上,不需要做皮试.
(3)小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,小华认为“3”出现的频率为.
解:(1)错误,“取出一只红球的概率是1”,说明这是一个必然事件,而不是可能性很大的,是100%.
(2)错误,虽然发生的概率只有0.1%,发生的可能性很小,但它仍有可能发生,而且有关生命,因此,小明应做皮试.
(3)错误,虽然小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,但是“3”出现的概率为.
21.(满分8分)小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是多少?
(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是一红一黑,则小李获胜;若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.
解:(1)∵共有4个球,其中有1个红球、2个白球、1个黑球,
∴摸到红球的概率是.
(2)根据题意画树状图如下:
共有12种等可能的情况数,其中两个球是一红一黑有2种,两个球都是白色的有2种,
则小李获胜的概率是=,小王获胜的概率是=,
所以游戏规则是公平的.
22.(满分8分)为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:
A.只愿意就读普通高中;
B.只愿意就读中等职业技术学校;
C.就读普通高中或中等职业技术学校都愿意.
学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图,如图,请根据相关信息,解答下列问题:
(1)本次活动共调查了 800 名学生.
(2)补全图1,并求出图2中B区域的圆心角的度数;
(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读普通高中的概率.
解:(1)本次活动调查的学生人数为80÷=800(名),
故答案为:800;
(2)B情况的人数为800﹣480﹣80=240(名),
补全图形如下:
图2中B区域的圆心角的度数为360°×=108°;
(3)估计该校学生只愿意就读普通高中的概率为=.
23.(满分8分)(1)如图1是书房地板的示意图,图中每一块地砖除了颜色外是完全相同的,现任意抛掷一个乒乓球,若乒乓球最后落在某一块地砖上算一次成功的抛掷,试求所有成功抛掷中,乒乓球抛掷后停留在黑地砖上的概率是多少?
(2)请在图2中,重新设计地砖的颜色,使乒乓球最后停留在地砖上的概率为.
解:(1)由图可知共有方砖8块,黑色方砖为4块,乒乓球停留在黑色方砖上的概率是
.
(2)黑色砖应有6块,画图如下:
.
24.(满分8分)为打赢疫情防控阻击战,配餐公司为某校提供A、B、C三种午餐供师生选择,单价分别是:8元、10元、15元.为了做好下阶段的经营与销售,配餐公司根据该校上周A、B、C三种午餐购买情况的数据制成统计表如下,又根据过去平均每份的利润与销售量之间的关系绘制成统计图如下:
种类
数量(份)
A
1800
B
2400
C
800
请你根据以上信息,解答下列问题:
(1)该校师生上周购买午餐费用的中位数是 10 元;
(2)为了提倡均衡饮食,假如学校要求师生每人选择两种不同午餐交替使用,试通过列表或画树状图分析,求该校学生小明选择“AB”组合的概率;
(3)经分析与预测,师生购买午餐种类与数量相对稳定.根据上级规定,配餐公司平均每份午餐的利润不得超过3元,否则应调低午餐的单价.
①请通过计算分析,试判断配餐公司在下周的销售中是否需要调低午餐的单价?
②为了便于操作,公司决定只调低一种午餐的单价,且调低幅度至少1元(只能整数元),才能使得下周平均每份午餐的利润在不违反规定下最接近3元,试通过计算说明,应把哪一种午餐的单价调整为多少元?
解:(1)全校总人数为:1800+2400+800=5000人.
因此再将价钱按照8元(A)、10元(B)、15元(C)的价钱排列后,
对于5000份数据,按照从小到大排列后,中位数为第2500和第2501个数据的平均数.也就是说,中位数为数量(份)的第2500和2501个数的平均数,
因此,通过统计表计算得知,A+B一共为1800+2400=4200,因此中位数为B午餐的费用,
即为10元,
故答案为10.
(2)①树状图如下:
根据树状图能够得到共有6种情况:AB,AC,BA,BC,CA,CB.
其中“AB”组合共有2中情况,
∴.
(3)根据条形统计图得知,A的利润为2元,B的利润为4元,C的利润为3元,
因此,总利润为:1800×2+4×2400+3×800=15600(元),
平均利润为:15600÷5000=3.12(元),
3.12>3,因此应调低午餐单价.
②假设调低A单价一元,平均每份午餐的利润为:(元),
调低B单价一元,平均每份午餐的利润为:(元),
调低C单价一元,平均每份午餐的利润为:(元),
当A,B,C调的越低,利润就越低,因此距离3元的利润就会越远,
因此最低即为降低1元,此时,当调低ABC大于1元时,平均每份午餐的利润一定小于2.96元,
综上,应该调低C午餐1元,即C的午餐单价应该调整为14元时,才能使下周平均每份午餐的利润更接近3元.
25.(满分10分)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸球的次数m
100
200
300
500
800
1000
3000
摸到白球的次数n
66
128
171
302
481
599
1806
摸到白球的频率
0.66
0.64
0.57
0.604
0.601
0.599
0.602
(1)若从盒子里随机摸出一球,则摸到白球的概率约为 0.6 ;(精确到0.1)
(2)估算盒子里约有白球 24 个;
(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x可能是多少?
解:(1)若从盒子里随机摸出一球,则摸到白球的概率约为0.6,
故答案为:0.6;
(2)估算盒子里约有白球40×0.6=24(个),
故答案为:24;
(3)根据题意知,24+1=0.5(40+x),
解得x=10,
答:推测x可能是10.
26.(满分12分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”重庆实验外国语学校为鼓励学生抗疫期间在家阅读,组织八年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.
(1)本次共抽查学生 50 人,并将条形统计图补充完整;
(2)读书本数的众数是 10 本,中位数是 12.5 本.
(3)在八年级2000名学生中,读书15本及以上(含15本)的学生估计有多少人?
(4)在八年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.
解:(1)本次共抽查学生14÷28%=50(人),
读书10本的学生有:50﹣9﹣14﹣7﹣4=16(人),
补全的条形统计图如右图所示,
故答案为:50;
(2)读书本数的众数是10本,中位数是(10+15)÷2=12.5(本),
故答案为:10,12.5;
(3)2000×=1000(人),
即读书15本及以上(含15本)的学生估计有1000人;
(4)树状图如下图所示,
一共有12种可能性,其中恰好是两位男生可能性有2种,
故恰好是两位男生分享心得的概率是.湘教版九年级上学期期末复习---第四章概率
一.选择题(共12小题,满分36分)
1.下列语句中描述的事件必然发生的是( )
A.15个人中至少有两个人同月出生
B.一位同学在打篮球,投篮一次就投中
C.在1,2,3,4中任取两个数,它们的和大于7
D.掷一枚硬币,正面朝上
2.“翻开数学书,恰好翻到第16页”,这个事件是( )
A.随机事件
B.必然事件
C.不可能事件
D.确定事件
3.下列说法正确的是( )
A.可能性很小的事情是不可能发生的
B.可能性很大的事情是必然发生的
C.投掷一枚普通的正方体骰子,结果恰好是“3”是不可能发生的
D.投掷一枚普通的正方体骰子,掷得的数不是奇数便是偶数是必然发生的
4.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则摸到红球的可能性是( )
A.
B.1
C.
D.
5.下列说法正确的是( )
A.为保证“嫦娥五号”成功发射,对其零部件检查采取抽样方式
B.“守株待兔”是必然事件
C.有5个数都是6的整数倍,从中任选2个数都是偶数的概率是1
D.某彩票中心宣布,某期彩票的中奖率是70%,小明买了10张彩票,一定有7张中奖
6.下列四个图形从中任取一个是中心对称图形的概率是( )
A.
B.1
C.
D.
7.一儿童行走在如图所示每个格子都是正方形的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )
A.
B.
C.
D.
8.某射击运动员在同一条件下的射击成绩记录如下:
射击次数
20
50
100
200
400
1000
“射中9环以上”的次数
15
41
78
158
320
800
“射中9环以上”的频率
0.75
0.82
0.78
0.79
0.80
0.80
根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率约是( )
A.0.75
B.0.82
C.0.78
D.0.80
9.在利用正六面体骰子进行频率估计概率的实验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )
A.朝上的点数是5的概率
B.朝上的点数是奇数的概率
C.朝上的点数是大于2的概率
D.朝上的点数是3的倍数的概率
10.下列说法正确的是( )
A.为了解一批灯泡的使用寿命,应采用普查的方式
B.抛掷两枚质量均匀的硬币,出现两面都是正面的概率为
C.某种彩票中奖的概率是,买1000张这种彩票一定会中奖
D.在一定条件下大量重复试验时,某个事件发生的频率稳定在0.6附近摆动,估计该事件发生的概率为0.6
11.一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是( )
A.
B.
C.
D.
12.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.
两人轮流掷骰子,游戏规则如下:
两颗骰子朝上的面颜色相同时,李红是赢家;
两颗骰子朝上的面颜色相异时,王英是赢家.
已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是( )
A.6
B.5
C.4
D.3
二.填空题(共6小题,满分18分)
13.下列事件中:①购买张彩票,中奖;②如果a为实数,那么|a|≥0;③水中捞月;④守株待兔.其中为必然事件的是
.(填序号)
14.如图,任意转动转盘1次,当转盘停止运动时,有下列事件:①指针落在标有5的区域内;②指针落在标有10的区域内;③指针落在标有奇数的区域内.请将这些事件的序号按事件发生的可能性从小到大的顺序依次排列为
.
15.一个不透明的袋子中装有12个小球,其中5个红球、7个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为
.
16.如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中∠ABC=90°,AC=50cm,AB=30cm,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是
.
17.某批篮球的质量检验结果如下:
抽取的篮球数n
100
200
400
600
800
1000
1200
优等品的频数m
93
192
380
561
752
941
1128
优等品的频率
0.930
0.960
0.950
0.935
0.940
0.941
0.940
从这批篮球中,任意抽取一只篮球是优等品的概率的估计值是
.(精确到0.01)
18.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为
.
二.解答题(共8小题)
19.(满分6分)在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.
(1)从口袋中任意取出一个球,是一个白球;
(2)从口袋中一次任取5个球,全是蓝球;
(3)从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.
20.(满分6分)判断下列说法是否正确,并说明理由.
(1)“从布袋中取出一只红球的概率是1”,这句话的意思是说取出一个红球的可能性很大.
(2)在医院里看病注射青霉素时,说明书上说发生过敏的概率大约为0.1%,小明认为这个概率很小,一定不会发生在自己的身上,不需要做皮试.
(3)小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,小华认为“3”出现的频率为.
21.(满分8分)小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是多少?
(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是一红一黑,则小李获胜;若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.
22.(满分8分)为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:
A.只愿意就读普通高中;
B.只愿意就读中等职业技术学校;
C.就读普通高中或中等职业技术学校都愿意.
学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图,如图,请根据相关信息,解答下列问题:
(1)本次活动共调查了
名学生.
(2)补全图1,并求出图2中B区域的圆心角的度数;
(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读普通高中的概率.
23.(满分8分)(1)如图1是书房地板的示意图,图中每一块地砖除了颜色外是完全相同的,现任意抛掷一个乒乓球,若乒乓球最后落在某一块地砖上算一次成功的抛掷,试求所有成功抛掷中,乒乓球抛掷后停留在黑地砖上的概率是多少?
(2)请在图2中,重新设计地砖的颜色,使乒乓球最后停留在地砖上的概率为.
24.(满分8分)为打赢疫情防控阻击战,配餐公司为某校提供A、B、C三种午餐供师生选择,单价分别是:8元、10元、15元.为了做好下阶段的经营与销售,配餐公司根据该校上周A、B、C三种午餐购买情况的数据制成统计表如下,又根据过去平均每份的利润与销售量之间的关系绘制成统计图如下:
种类
数量(份)
A
1800
B
2400
C
800
请你根据以上信息,解答下列问题:
(1)该校师生上周购买午餐费用的中位数是
元;
(2)为了提倡均衡饮食,假如学校要求师生每人选择两种不同午餐交替使用,试通过列表或画树状图分析,求该校学生小明选择“AB”组合的概率;
(3)经分析与预测,师生购买午餐种类与数量相对稳定.根据上级规定,配餐公司平均每份午餐的利润不得超过3元,否则应调低午餐的单价.
①请通过计算分析,试判断配餐公司在下周的销售中是否需要调低午餐的单价?
②为了便于操作,公司决定只调低一种午餐的单价,且调低幅度至少1元(只能整数元),才能使得下周平均每份午餐的利润在不违反规定下最接近3元,试通过计算说明,应把哪一种午餐的单价调整为多少元?
25.(满分10分)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸球的次数m
100
200
300
500
800
1000
3000
摸到白球的次数n
66
128
171
302
481
599
1806
摸到白球的频率
0.66
0.64
0.57
0.604
0.601
0.599
0.602
(1)若从盒子里随机摸出一球,则摸到白球的概率约为
;(精确到0.1)
(2)估算盒子里约有白球
个;
(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x可能是多少?
26.(满分12分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”某校为鼓励学生抗疫期间在家阅读,组织八年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.
(1)本次共抽查学生
人,并将条形统计图补充完整;
(2)读书本数的众数是
本,中位数是
本.
(3)在八年级2000名学生中,读书15本及以上(含15本)的学生估计有多少人?
(4)在八年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.