(共21张PPT)
幂的乘方与积的乘方
第一课时
回顾与思考
回顾 & 思考
am · an
(a·a· … ·a)
n个a
=(a·a· … ·a)
m个a
= a·a· … ·a
(m+n)个a
= am+n
幂的意义:
a·a· … ·a
n个a
an
=
同底数幂乘法的运算性质:
am · an
=
am+n
(m,n都是正整数)
推导过程
正方体的边长是 2 cm, 则乙正方体的体积 V乙= cm3
V甲 是 V乙 的 倍
8
125
即 53 倍
正方体的体积比与边长比的关系
正方体的体积之比=
边长比的
立方。
甲正方体的边长是乙正方体的 5 倍,则
甲正方体的体积 V甲= cm3
1000
乙球的半径为 3 cm, 则
乙球的体积V乙= cm3.
V甲 是 V乙 的 倍
即 103 倍
球的体积比与半径比的关系
球体的体积之比=
半径比的
立方。
甲球的半径是乙球的10倍,则
甲球的体积V甲= cm3 .
1000
36
36000
地球、木星、太阳可以近似地看作球体 。木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的 倍和 倍.
木星
地球
太阳
体积扩大的倍数比半径扩大的倍数大得多.
如果甲球的半径是乙球的n 倍,那么甲球体积是乙球体积的 倍。
n3
103
106
(102)3=106,为什么?
(102)3
=102×102×102
=102+2+2
=102×3
=106
太棒了
(根据 ).
(根据 ).
同底数幂的乘法性质
幂的意义
(102)3=106,为什么?
(102)3=106,为什么?
做一做
做一做
计算下列各式,并说明理由 .
(1) (62)4 ; (2) (a2)3 ; (3) (am)2 ; (4) (am)n .
解:(1) (62)4
(2) (a2)3
(3) (am)2
= 62·62· 62·62
=62+2+2+2
=68
= a2·a2·a2
=a2+2+2
=a6
=am·am
=am+m
(4) (am)n
=am·am· … ·am
个am
=am+m+ … +m
=amn
(幂的意义)
(同底数幂的乘法性质)
(乘法的意义)
猜想
=
=62×4 ;
(62)4
=a2×3 ;
(a2)3
=a2m ;
(am)2
amn
证明
n
个m
n
(am)n=amn (m,n都是正整数)
底数 ,指数 .
幂的乘方,
幂 的 乘 方 法则
不变
相乘
例题解析
例题解析
【例1】计算:
(1) (102)3 ; (2) (b5)5 ; (3) (an)3;
(4) -(x2)m ; (5) (y2)3 · y ; (6) 2(a2)6 - (a3)4 .
(6) 2(a2)6 – (a3)4
=102×3
=106 ;
(1) (102)3
解:
(2) (b5)5
= b5×5
= b25 ;
(3) (an)3
= an×3
=a3n ;
(4) -(x2)m
= -x2×m
= -x2m ;
(5) (y2)3 · y
= y2×3 · y
= y6 · y
=2a2×6 - a3×4
=2a12-a12
=a12.
= y7;
阅读 体验
随堂练习
随堂练习
p16
1、计算:
(1) (103)3 ; (2) -(a2)5 ; (3) (x3)4 · x2 ;
(4) [(-x)2 ]3 ; (5) (-a)2(a2)2; (6) x·x4 – x2 · x3 .
2. 判断下面计算是否正确?如果有错误请改正:
(1) (x3)3 = x6 ; (2)a6 · a4 = a24 .
探索与交流
(1) 根据乘方定义(幂的意义),(ab)3表示什么
探索 & 交流
参与活动:
(ab)3=
ab·ab·ab
(2) 为了计算(化简)算式ab·ab·ab,可以应用乘法的交换律和结合律。
又可以把它写成什么形式
=a·a·a · b·b·b
=a3·b3
探索
(3)由特殊的 (ab)3=a3b3 出发, 你能想到一般的公式 吗
(ab)n=
anbn
的证明
在下面的推导中,说明每一步(变形)的依据:
(ab)n = ab·ab·……·ab ( )
=(a·a·……·a) (b·b·……·b) ( )
=an·bn. ( )
幂的意义
乘法交换律、结合律
幂的意义
n个ab
n个a
n个b
(ab)n =
an·bn
积的乘方法则
上式显示:
积的乘方= .
(ab)n =
an·bn
积的乘方
乘方的积
(m,n都是正整数)
每个因式分别乘方后的积
积的乘方法则
你能说出法则中“因式”这两个字的意义吗
(a+b)n,可以用积的乘方法则计算吗
即 “(a+b)n= an·bn ” 成立吗?
又 “(a+b)n= an+an ” 成立吗?
公 式 的 拓 展
三个或三个以上的积的乘方,是否也具有上面的性质
怎样用公式表示
(abc)n=an·bn·cn
怎样证明
有两种思路______ 一种思路是利用乘法结合律,把三个因式积的乘方转化成两个因式积的乘方、再用积的乘方法则;
另一种思路是仍用推导两个因式的积的乘方的方法:乘方的意义、乘法的交换律与结合律.
方法提示
试用第一种方法证明:
(abc)n=[(ab)·c]n
=(ab)n·cn
= an·bn·cn.
例题解析
例题解析
【例2】计算:
(1)(3x)2 ; (2)(-2b)5 ; (3)(-2xy)4 ; (4)(3a2)n .
=32x2
= 9x2 ;
(1) (3x)2
解:
(2) (-2b)5
= (-2)5b5
= -32b25 ;
(3) (-2xy)4
= (-2x)4 y4
= (-2)4 x4 y4
(4) (3a2)n
= 3n (a2)n
= 3n a2n 。
阅读 体验
=16x4 y4 ;
例题解析
例题解析
【例3】地球可以近似地看做是球体,如果用V, r 分别代表球的体积和半径,那么 。 地球的半径约为6×103 千米,它的体积大约是多少立方千米
解:
阅读 体验
=
×(6×103)3
=
×
63×109
≈
9.05×1011
(千米11)
注意
运算顺序 !
随堂练习
随堂练习
p18
1、计算:
(1) (- 3n)3 ; (2) (5xy)3 ; (3) –a3 +(–4a)2 a 。
公 式 的 反 向 使 用
试用简便方法计算:
(ab)n = an·bn
(m,n都是正整数)
反向使用:
an·bn = (ab)n
(1) 23×53 ;
(2) 28×58 ;
(3) (-5)16 × (-2)15 ;
(4) 24 × 44 ×(-0.125)4 ;
= (2×5)3
= 103
= (2×5)8
= 108
= (-5)×[(-5)×(-2)]15
= -5×1015 ;
= [2×4×(-0.125)]4
= 14
= 1 .
本节课你的收获是什么?
小结
本节课你学到了什么
{
幂
的
意
义
积的乘方的运算性质:
(am)n = amn ( m,n 都是正整数 ).
同底数幂乘法的运算性质:
am · an=
amn ( m,n 都是正整数 )
底数 不变 ,
指数 相加 .
底数 ,
指数 .
相乘
不变
作业
习题1.6 —1 、 2、3、4;
作业
试一试。
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
2、从善如登,从恶如崩。
3、现在决定未来,知识改变命运。
4、当你能梦的时候就不要放弃梦。
5、龙吟八洲行壮志,凤舞九天挥鸿图。
6、天下大事,必作于细;天下难事,必作于易。
7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。
8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。
9、永远不要逃避问题,因为时间不会给弱者任何回报。
10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。
11、明天是世上增值最快的一块土地,因它充满了希望。
12、得意时应善待他人,因为你失意时会需要他们。
13、人生最大的错误是不断担心会犯错。
14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。
15、不管怎样,仍要坚持,没有梦想,永远到不了远方。
16、心态决定命运,自信走向成功。
17、第一个青春是上帝给的;第二个的青春是靠自己努力的。
18、励志照亮人生,创业改变命运。
19、就算生活让你再蛋疼,也要笑着学会忍。
20、当你能飞的时候就不要放弃飞。
21、所有欺骗中,自欺是最为严重的。
22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。
23、天行健君子以自强不息;地势坤君子以厚德载物。
24、态度决定高度,思路决定出路,细节关乎命运。
25、世上最累人的事,莫过於虚伪的过日子。
26、事不三思终有悔,人能百忍自无忧。
27、智者,一切求自己;愚者,一切求他人。
28、有时候,生活不免走向低谷,才能迎接你的下一个高点。
29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。
30、经验是由痛苦中粹取出来的。
31、绳锯木断,水滴石穿。
32、肯承认错误则错已改了一半。
33、快乐不是因为拥有的多而是计较的少。
34、好方法事半功倍,好习惯受益终身。
35、生命可以不轰轰烈烈,但应掷地有声。
36、每临大事,心必静心,静则神明,豁然冰释。
37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。
38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
39、人的价值,在遭受诱惑的一瞬间被决定。
40、事虽微,不为不成;道虽迩,不行不至。
41、好好扮演自己的角色,做自己该做的事。
42、自信人生二百年,会当水击三千里。
43、要纠正别人之前,先反省自己有没有犯错。
44、仁慈是一种聋子能听到、哑巴能了解的语言。
45、不可能!只存在于蠢人的字典里。
46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。
47、小事成就大事,细节成就完美。
48、凡真心尝试助人者,没有不帮到自己的。
49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。
50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。
51、对于最有能力的领航人风浪总是格外的汹涌。
52、思想如钻子,必须集中在一点钻下去才有力量。
53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。
54、最伟大的思想和行动往往需要最微不足道的开始。
55、不积小流无以成江海,不积跬步无以至千里。
56、远大抱负始于高中,辉煌人生起于今日。
57、理想的路总是为有信心的人预备着。
58、抱最大的希望,为最大的努力,做最坏的打算。
59、世上除了生死,都是小事。从今天开始,每天微笑吧。
60、一勤天下无难事,一懒天下皆难事。
61、在清醒中孤独,总好过于在喧嚣人群中寂寞。
62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。
63、彩虹风雨后,成功细节中。
64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。
65、只要有信心,就能在信念中行走。
66、每天告诉自己一次,我真的很不错。
67、心中有理想 再累也快乐
68、发光并非太阳的专利,你也可以发光。
69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。
70、当你的希望一个个落空,你也要坚定,要沉着!
71、生命太过短暂,今天放弃了明天不一定能得到。
72、只要路是对的,就不怕路远。
73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。
74、先知三日,富贵十年。付诸行动,你就会得到力量。
75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。
76、好习惯成就一生,坏习惯毁人前程。
77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。
78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。
79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。