新课程高中数学测试题(数学1必修)第一章(下)函数的基本性质

文档属性

名称 新课程高中数学测试题(数学1必修)第一章(下)函数的基本性质
格式 zip
文件大小 282.9KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2011-11-30 21:00:22

图片预览

文档简介

(数学1必修)第一章(下) 函数的基本性质
[基础训练A组]
一、选择题
1.已知函数为偶函数,
则的值是( )
A. B.
C. D.
2.若偶函数在上是增函数,则下列关系式中成立的是( )
A.
B.
C.
D.
3.如果奇函数在区间 上是增函数且最大值为,
那么在区间上是( )
A.增函数且最小值是 B.增函数且最大值是
C.减函数且最大值是 D.减函数且最小值是
4.设是定义在上的一个函数,则函数
在上一定是( )
A.奇函数 B.偶函数
C.既是奇函数又是偶函数 D.非奇非偶函数。
5.下列函数中,在区间上是增函数的是( )
A. B.
C. D.
6.函数是( )
A.是奇函数又是减函数
B.是奇函数但不是减函数
C.是减函数但不是奇函数
D.不是奇函数也不是减函数
二、填空题
1.设奇函数的定义域为,若当时, 的图象如右图,则不等式的解是
2.函数的值域是________________。
3.已知,则函数的值域是 .
4.若函数是偶函数,则的递减区间是 .
5.下列四个命题
(1)有意义; (2)函数是其定义域到值域的映射;
(3)函数的图象是一直线;(4)函数的图象是抛物线,
其中正确的命题个数是____________。
三、解答题
1.判断一次函数反比例函数,二次函数的
单调性。
2.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;
(2)在定义域上单调递减;(3)求的取值范围。
3.利用函数的单调性求函数的值域;
4.已知函数.
① 当时,求函数的最大值和最小值;
② 求实数的取值范围,使在区间上是单调函数。
[综合训练B组]
一、选择题
1.下列判断正确的是( )
A.函数是奇函数 B.函数是偶函数
C.函数是非奇非偶函数 D.函数既是奇函数又是偶函数
2.若函数在上是单调函数,则的取值范围是( )
A. B.
C. D.
3.函数的值域为( )
A. B.
C. D.
4.已知函数在区间上是减函数,
则实数的取值范围是( )
A. B. C. D.
5.下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3) 的递增区间为;(4) 和表示相等函数。
其中正确命题的个数是( )
A. B. C. D.
6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )
二、填空题
1.函数的单调递减区间是____________________。
2.已知定义在上的奇函数,当时,,
那么时, .
3.若函数在上是奇函数,则的解析式为________.
4.奇函数在区间上是增函数,在区间上的最大值为,
最小值为,则__________。
5.若函数在上是减函数,则的取值范围为__________。
三、解答题
1.判断下列函数的奇偶性
(1) (2)
2.已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;
(2)函数是奇函数。
3.设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.
4.设为实数,函数,
(1)讨论的奇偶性;
(2)求的最小值。
[提高训练C组]
一、选择题
1.已知函数,,
则的奇偶性依次为( )
A.偶函数,奇函数 B.奇函数,偶函数
C.偶函数,偶函数 D.奇函数,奇函数
2.若是偶函数,其定义域为,且在上是减函数,
则的大小关系是( )
A.> B.<
C. D.
3.已知在区间上是增函数,
则的范围是( )
A. B.
C. D.
4.设是奇函数,且在内是增函数,又,
则的解集是( )
A. B.
C. D.
5.已知其中为常数,若,则的
值等于( )
A. B. C. D.
6.函数,则下列坐标表示的点一定在函数f(x)图象上的是( )
A. B.
C. D.
二、填空题
1.设是上的奇函数,且当时,,
则当时_____________________。
2.若函数在上为增函数,则实数的取值范围是 。
3.已知,那么=_____。
4.若在区间上是增函数,则的取值范围是 。
5.函数的值域为____________。
三、解答题
1.已知函数的定义域是,且满足,,
如果对于,都有,
(1)求;
(2)解不等式。
2.当时,求函数的最小值。
3.已知在区间内有一最大值,求的值.
4.已知函数的最大值不大于,又当,求的值。
参考答案
(数学1必修)第一章下 [基础训练A组]
一、选择题
1. B 奇次项系数为
2. D
3. A 奇函数关于原点对称,左右两边有相同的单调性
4. A
5. A 在上递减,在上递减,
在上递减,
6. A
为奇函数,而为减函数。
二、填空题
1. 奇函数关于原点对称,补足左边的图象
2. 是的增函数,当时,
3. 该函数为增函数,自变量最小时,函数值最小;
自变量最大时,函数值最大
4.
5. (1),不存在;(2)函数是特殊的映射;(3)该图象是由
离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线。
三、解答题
1.解:当,在是增函数,当,在是减函数;
当,在是减函数,
当,在是增函数;
当,在是减函数,在是增函数,
当,在是增函数,在是减函数。
2.解:,则,
3.解:,显然是的增函数,,
4.解:对称轴

(2)对称轴当或时,在上单调
∴或。
[综合训练B组]
一、选择题
1. C 选项A中的而有意义,非关于原点对称,选项B中的
而有意义,非关于原点对称,选项D中的函数仅为偶函数;
2. C 对称轴,则,或,得,或
3. B ,是的减函数,

4. A 对称轴
A (1)反例;(2)不一定,开口向下也可;(3)画出图象
可知,递增区间有和;(4)对应法则不同
6. B 刚刚开始时,离学校最远,取最大值,先跑步,图象下降得快!
二、填空题
1. 画出图象
2. 设,则,,
∵∴,
3.
∵∴

4. 在区间上也为递增函数,即
5.
三、解答题
1.解:(1)定义域为,则,
∵∴为奇函数。
(2)∵且∴既是奇函数又是偶函数。
2.证明:(1)设,则,而

∴函数是上的减函数;
(2)由得
即,而
∴,即函数是奇函数。
3.解:∵是偶函数, 是奇函数,∴,且
而,得,
即,
∴,。
4.解:(1)当时,为偶函数,
当时,为非奇非偶函数;
(2)当时,
当时,,
当时,不存在;
当时,
当时,,
当时,。
[提高训练C组]
一、选择题
1. D ,
画出的图象可观察到它关于原点对称
或当时,,则
当时,,则
2. C ,
3. B 对称轴
4. D 由得或而
即或
5. D 令,则为奇函数
6. B 为偶函数
一定在图象上,而,∴一定在图象上
二、填空题
1. 设,则,
∵∴
2. 且 画出图象,考虑开口向上向下和左右平移
3. ,
4. 设则,而
,则
5. 区间是函数的递减区间,把分别代入得最大、小值
三、解答题
解:(1)令,则
(2)

则。
解:对称轴
当,即时,是的递增区间,;
当,即时,是的递减区间,;
当,即时,。
3.解:对称轴,当即时,是的递减区间,
则,得或,而,即;
当即时,是的递增区间,则,
得或,而,即不存在;当即时,
则,即;∴或 。
4.解:,
对称轴,当时,是的递减区间,而,
即与矛盾,即不存在;
当时,对称轴,而,且
即,而,即
d
d0
t0 t
O
A.
d
d0
t0 t
O
B.
d
d0
t0 t
O
C.
d
d0
t0 t
O
D.
子曰:知之者不如好之者,好之者不如乐之者。
子曰:温故而知新,可以为师矣。