椭圆及其标准方程(第一课时)(说课稿)
一、教材分析
1、教材的地位及作用
江苏教育版(选修2—1)第二章《圆锥曲线》是高考重点考查章节。“椭圆及其标准方程”是《圆锥曲线》第一节的内容,是继学习圆以后运用 “曲线和方程”理论解决具体的二次曲线的又一实例。从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础;所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。因此搞好这一节的教学,具有非常重要的意义。
2、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。
(2)、能力目标:让学生通过自我探究、操作、数学思想(待定系数法)的运用等,从而提高学生实际动手、合作学习以及运用知识解决实际问题的能力。
(3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新的精神。
3、教学重点、难点
教学重点:椭圆的定义及椭圆的标准方程
教学难点:椭圆标准方程的建立和推导。
在学习本课《椭圆及其标准方程》前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。但由于学生学习解析几何时间还不长、学习程度也较浅,学生对坐标法解决几何问题掌握还不够。另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。
据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的推导为本课的难点。
4、教材处理
根据新大纲要求,本节课的内容特点以及结合我校学生的实际情况,我把本节内容分2个课时进行教学。
第一课时,主要研究椭圆的定义、标准方程的推导。
第二课时,运用椭圆的定义求曲线的轨迹方程。
二、教学方法和教学手段
课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则 。根据这样的原则及所要完成的教学目标 ,我采用如下的教学方法和手段:
教学方法:我采用的是引导发现法、探索讨论法等。
1、引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义。
2、探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;
有利于突出重点,突破难点,发挥其创造性。
引导发现法和探索讨论法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性。
教学手段:利用多媒体课件教学,化抽象为具体,降底学生学习难度,增强动感及直观感,增大教学容量,提高教学质量。
三、学法指导
“授人以鱼,不如授人以渔.” 教会学生:
1、动手尝试;2、仔细观察;3分析讨论;4、抽象出概念,推出方程。这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程.
四、教学程序
教学流程设计:认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用→本课小结→作业布置
教学环节 教学程序(师生双边活动) 设计意图
认识椭圆 图片展示:椭圆就在我们身边。 (1)、从学生所关心的实际问题引入,使学生了解数学来源于实际。(2)、展示图片,使学生更好的掌握椭圆形状,更直观、形象地了解后面要学的内容;
画椭圆 1、画一画 (画椭圆):(1)、请学生拿出课前准备的硬纸板、细线、铅笔,同桌一起合作画椭圆。(2)、3、椭圆画法:(1)画圆;(2)画椭圆。(可叫四位同学一组,自备细绳,现场画图;教师展示课件:椭圆的形成。)课件动态演示椭圆的形成过程:接着指出:这就是我们要学习的一类新的封闭曲线——椭圆。 (1)、通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性(2)、多媒体演示向学生说明椭圆的具体画法,更直观形象。
定义椭圆 2、议一议(椭圆的定义及有关概念)(1)、由学生画图及教师演示椭圆的形成过程,引导学生归纳定义。定义:在平面内,到两定点F1,F2的距离之和等于常数2a(2a>∣F1F2 |)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距,记∣F1F2 |=2c.(2)、椭圆定义的再认识。问题:为什么要满足2a>2c呢?(1)当2a=2c时,轨迹是什么?(2)当2a<2c时,轨迹又是什么?结论:(1)、当2a>|F1F2|时,是椭圆; (2)、当2a=|F1F2|时,是线段; (3)、当2a<|F1F2|轨迹不存在。 让学生通过反思画图,归纳定义,理解定义,利用动画演示,深刻地理解椭圆定义条件,突破了重点。
推导椭圆方程 3、求一求:(椭圆标准方程的推导)(教师引导)设问1:求曲线方程的一般方法样?(建系、设点、列式、化简)设问2:本题中可以怎样建立直角坐标系?(让学生根据自已的经验来确定)方案1:(如图1)以F1、F2所在的直线为轴,F1F2的中点为原点建立直角坐标系: 方案2:(如图2)以F1、F2所在的直线为轴, F1F2的中点为原点建立直角坐标系 图1 图2方程:和请学生观察归纳二个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;令要渗透数学对称美教学。说明:①;②(要区别与习惯思维下的勾股定理); 让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。教师结合猜想加以引导。
问题点拨 4、问一问:问题1:在探索中得到了椭圆方程:但不会化简。问题2:化简后得到的方程好象没有猜想简洁、漂亮,与课本上的标准方程也有一点距离。设问:①教师问:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。②教师问:对于本式是直接平方好呢,还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。 通过精心设问突破了椭圆方程推导的难点,深化了学生的探索活动。允许和鼓励学生提问,让学生从“不问”到“敢问、善问”是培养学习能力的重要一环。
椭圆方程知识讲解 5、用一用(讲解知识)例1:判断下列各椭圆的焦点位置,并说出焦点坐标、焦距。(1) (2)(3) (4)例2:求适合下列条件的椭圆标准方程(1)两个焦点的坐标分别为,椭圆上一点P到两焦点距离的和等于10(2)两个焦点的坐标分别为,并且椭圆经过点 (1)、掌握椭圆方程中a,b,c三者之间的关系(2)、掌握运用椭圆定义法、待定系数法求椭圆的标准方程。运用定义法时要强化根式化简计算;运用待定系数法时强调“二定”即定位定量;(3)、培养学生运用知识解决问题的能力。
椭圆方程知识运用 6、练一练(运用知识)1、已知F1、F2是椭圆的两个焦点,过F1的直线交椭圆于M、N两点,则的周长为 。2、平面内两定点距离之和等于8,一个动点到这两个定点的距离之和等于10,建立适当坐标系写出动点的轨迹方程。 通过课堂练习,使学生进一步巩固知识,运用知识
小结 小结 :(一、二、二、三)一个定义:(椭圆的定义)、二类方程:(焦点分别在轴、轴的上的两个标准方程)、二种方法:(去根号的方法、待定系数系法)三个意识:(求美意识,求简意识,猜想意识) 归纳小结,突出重点,巩固新知,形成知识网络。
作业布置 1、写出适合下列条件的椭圆标准方程:(1)a=4,b=1,焦点在x轴上。(2)a=4,c=3,运用椭圆的定义3.研究性题:反思画图,观察椭圆上的点到焦点的距离最大最小的点是哪个点?并用数学方法加以证明。 (1)、巩固知识发现和弥补教学中的不足。(2)、强化学生的基本技能的训练,提高学生运用新知识的熟练程度
五、板书设计
六、教学评价
1、这节课围绕“认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用”这一主线展开。
2、教学中学生通过观看动画、动手实践,自己总结出椭圆定义,符合从感性上升为理性的认识规律。
3、在整个教学过程中,采用引导发现法、探索讨论法等教学方法,注重数形结合等数学思想的渗透。培养学生勇于探索、勇于创新的精神。
课 题
1、椭圆的定义
2、有关概念
3、标准方程
(1)、焦点在轴上
(2)、焦点在轴上
椭圆标准方程的推导过程书写
例1:(写要点)
例2:
(1)详写
(2)写关键步骤