人教版七年级数学下册知识双清练:8.1 二元一次方程组(Word版 含答案)

文档属性

名称 人教版七年级数学下册知识双清练:8.1 二元一次方程组(Word版 含答案)
格式 zip
文件大小 24.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-01-18 09:30:40

图片预览

文档简介

8.1 二元一次方程组
练知识点
知识点
1 二元一次方程的定义
1.在方程x+5y=8,8x-2y=3中,每个方程都含有    个未知数,并且含有未知数的项的次数都是    ,这样的方程叫做       .?
2.
下列方程是二元一次方程的是(  )
A.2x+3y=z
B.+y=5
C.x2+y=0
D.y=(x+8)
知识点
2 二元一次方程组的定义
3.
下列属于二元一次方程组的是
(  )
A.
B.
C.
D.
4.有下列方程组:①②③④其中,二元一次方程组有
(  )
A.1个
B.2个
C.3个
D.4个
知识点
3 二元一次方程的解
5.为下列哪一个二元一次方程的解(  )
A.x+2y=-1
B.x-2y=1
C.2x+3y=6
D.2x-3y=-6
6.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是
(  )
A.
B.
C.
D.
知识点
4 二元一次方程组的解
7.已知下列5组数据:(1)(2)(3)
(4)(5)
其中     是二元一次方程2x-y=3的解;     是二元一次方程x+2y=4的解;    是二元一次方程组的解.(填序号)?
8.以为解的二元一次方程组是
(  )
A.
B.
C.
D.
知识点
5 建立方程组模型解决实际问题
9.夏季来临,某超市试销A,B两种型号的风扇,两周内共销售30台,销售收入为5300元,A型号风扇每台200元,B型号风扇每台150元,则A,B两种型号的风扇各销售了多少台?若设A型号风扇销售了x台,B型号风扇销售了y台,则根据题意列出方程组为
(  )
A.
B.
C.
D.
10.5月份,甲、乙两个工厂共用水200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂的用水量比5月份减少了15%,乙工厂的用水量比5月份减少了10%,两个工厂6月份共用水174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份的用水量为x吨,乙工厂5月份的用水量为y吨,根据题意列出关于x,y的方程组为      .?
练综合能力
11.
已知关于x,y的方程ax+y=3x-1是二元一次方程,则a满足的条件是(  )
A.a≠0
B.a≠-1
C.a≠3
D.a≠1
12.已知是方程2x-ay=3的一个解,那么a的值是
(  )
A.1
B.3
C.-3
D.-1
13.若是方程2x+y=0的一个解且a≠0,则a·b的符号是
(  )
A.正号
B.负号
C.可能是正号,也可能是负号
D.既不是正号,也不是负号
14.若是方程组的解,则a+b的值为
(  )
A.1
B.2
C.3
D.4
15.若方程组的解为则?,?表示的两个数分别为
(  )
A.1,2
B.1,3
C.2,3
D.2,4
16.二元一次方程2x+y=7的非负整数解的个数是
(  )
A.1
B.2
C.3
D.4
17.为了丰富学生的课外活动,培养学生的动手操作能力,王老师让学生把5
m长的彩绳截成2
m或1
m长的彩绳,用来做手工编织,在不造成浪费的前提下,不同的截法共有
(  )
A.1种
B.2种
C.3种
D.4种
18.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若1个甲种玩具零件与2个乙种玩具零件能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具?设生产甲种玩具零件x天,乙种玩具零件y天,则有(  )
A.
B.
C.
D.
19.已知是二元一次方程ax+by=-1的一个解,则2a-b+2021=    .?
20.已知关于x,y的方程组甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a,b的值.
21.阅读下列材料,解答问题:
我们知道方程2x+3y=12有无数个解,但在实际生活中我们往往只需求出其正整数解.
例:由2x+3y=12,得y==4-x(x,y为正整数).要使y=4-x为正整数,则x为正整数,由2,3互质,可知x为3的倍数,将x=3代入得y=4-x=2,所以2x+3y=12的一组正整数解为
问题:
(1)请你直接写出方程3x-y=6的一组正整数解:    ;?
(2)若为自然数,则满足条件的正整数x的值的个数为
(  )
A.5
B.6
C.7
D.8
(3)七年级某班为了奖励课堂“展示之星”与“质疑之星”,特购买单价为3元/本的笔记本与单价为5元/支的中性笔两种奖品,共花费48元,试写出购买方案.
参考答案
1.两 1 二元一次方程
2.D 3.A
4.C 解析:
只有不是二元一次方程组.
5.A 解析:
将x=-3,y=1代入各选项.(-3)+2×1=-1,故A选项正确;(-3)-2×1=-5≠1,故B选项错误;2×(-3)+3×1=-3≠6,故C选项错误;2×(-3)-3×1=-9≠-6,故D选项错误.
6.B 解析:
把A,B,C,D四个选项中的数分别代入检验.
7.(1)(2)(4) (2)(3)(5) (2)
8.C 解析:
把分别代入各方程组,选使两个方程同时成立的项.
9.C
10.
11.C 解析:
原方程可化为(a-3)x+y=-1,若它是二元一次方程,则需a-3≠0,即a≠3.
12.A 解析:
把代入方程,得2×1-a·(-1)=3,所以2+a=3,所以a=1.故选A.
13.B 解析:
因为是方程2x+y=0的一个解,所以2a+b=0,即b=-2a.又a≠0,所以a,b异号,则a·b的符号是负号.
14.D
15.D
16.D 解析:
二元一次方程2x+y=7的非负整数解为不能丢掉这一个非负整数解.
17.C 解析:
设2
m长的彩绳有x条,1
m长的彩绳有y条,则2x+y=5.因为x,y都是非负整数,所以x=0,y=5;x=1,y=3;x=2,y=1,共3种.
18.C 解析:
根据总天数是60天,可得x+y=60;根据乙种零件个数应是甲种零件个数的2倍,可列方程为2×24x=12y.则可列方程组为
19.2020
20.解析:
根据方程组的解的概念可知:x=-3,y=-1是方程②的解,x=5,y=2是方程①的解,故分别代入方程②,①可求出a,b的值.
解:根据题意,把代入方程②,
得-12+b=-2,解得b=10.
把代入方程①,得5a+10=15,
解得a=1.
即a=1,b=10.
21.解:(1)(答案不唯一)
(2)B
(3)设笔记本买了x本,中性笔买了y支.
根据题意,得3x+5y=48,
所以x=16-y.
因为x,y均为正整数,所以y为3的整数倍.
当y=3时,x=11;当y=6时,x=6;当y=9时,x=1.
所以购买方案有三种,即购买11本笔记本,3支中性笔;或购买6本笔记本,6支中性笔;或购买1本笔记本,9支中性笔.