点和圆的位置关系有几种?
点到圆心的距离为d,圆的半径为r,则:
点在圆外 d>r;
点在圆上 d=r;
点在圆内 dA
B
C
位置关系
数形结合:
数量关系
请同学们利用手中的工具描绘出整个情景。
在描绘过程中,你认为直线与圆的位置关系可以分为哪几类?
你分类的依据是什么?
(地平线)
a(地平线)
●O
●O
●O
(2)直线和圆有唯一个公共点,
叫做直线和圆相切,
这条直线叫圆的切线,
这个公共点叫切点。
(1)直线和圆有两个公共点,
叫做直线和圆相交,
这条直线叫圆的割线,
这两个公共点叫交点。
(3)直线和圆没有公共点时,
叫做直线和圆相离。
归纳一、直线与圆的位置关系(用公共点的个数来区分)
练习一:
看图判断直线l与⊙O的位置关系
(1)
(2)
(3)
(4)
(5)
?
l
l
l
l
l
·O
·O
·O
·O
·O
(5)
?
l
如果公共点的个数不好判断,该怎么办?
·O
联想类比: “直线和圆的位置关系”能否像“点和圆的位置关系”一样进行数量分析?
2、连结直线外一点与直线所
有点的线段中,最短的是______?
1.直线外一点到这条直线
的垂线段的长度叫点到直线
的距离。
垂线段
a
.A
D
相关知识点回忆
直线和圆相交
d< r
直线和圆相切
d= r
直线和圆相离
d> r
r
d
∟
r
d
∟
r
d
数形结合:
位置关系
数量关系
归纳二、直线和圆的位置关系(用圆心o到直线l的距离d与圆的半径r的关系来区分)
总结:
判定直线 与圆的位置关系的方法有____种:
(1)根据定义,由________________
的个数来判断;
(2)根据性质,由_________________
的关系来判断。
在实际应用中,常采用第二种方法判定。
两
直线 与圆的公共点
圆心到直线的距离d与半径r
1、已知圆的直径为13cm,设直线和圆心的距离为d :
3)若d= 8 cm ,则直线与圆______, 直线与圆有____个公共点.
2)若d=6.5cm ,则直线与圆______, 直线与圆有____个公共点.
1)若d=4.5cm ,则直线与圆 , 直线与圆有____个公共点.
3)若AB和⊙O相交,则 .
2、已知⊙O的半径为5cm, 圆心O与直线AB的距离为d, 根据 条件填写d的范围:
1)若AB和⊙O相离, 则 ;
2)若AB和⊙O相切, 则 ;
相交
相切
相离
d > 5cm
d = 5cm
d < 5cm
小试牛刀
0cm≤
2
1
0
例题:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB
有怎样的位置关系?为什么?
(1)r=2cm;(2)r=2.4cm (3)r=3cm.
B
C
A
4
3
分析:要了解AB与⊙C的位置
关系,只要知道圆心C到AB的
距离d与r的关系.已知r,只需
求出C到AB的距离d。
D
d
解:过C作CD⊥AB,垂足为D
在△ABC中,
AB=
5
根据三角形的面积公式有
∴
即圆心C到AB的距离d=2.4cm
所以 (1)当r=2cm时,
有d>r,
因此⊙C和AB相离。
B
C
A
4
3
D
d
(2)当r=2.4cm时,
有d=r,
因此⊙C和AB相切。
(3)当r=3cm时,
有d因此,⊙C和AB相交。
B
C
A
4
3
D
B
C
A
4
3
D
d
d
判定直线与圆的位置关系的方法有____种:
(1)根据定义,由__________________的个数来判断;
(2)根据性质,_____________________
______________的关系来判断。
两
直线 与圆的公共点
圆心到直线的距离d
与半径r
归纳小结:
直线与圆的位置关系:
0
d>r
1
d=r
切点
切线
2
d交点
割线
.O
l
d
r
┐
┐
.o
l
d
r
.O
l
d
┐
r
.
A
C
B
.
.
相离
相切
相交
已知:圆的直径为13cm,如果直线和
圆心的距离为以下值时,直线和圆有几个
公共点?为什么?
(1) 4.5cm
A 0 个; B 1个; C 2个;
答案:C
(2) 6.5cm
答案:B
(3) 8cm
答案:A
A 0 个; B 1个; C 2个;
A 0 个; B 1个; C 2个;
自我检验
A.(-3,-4)
O
x
y
已知⊙A的直径为6,点A的坐标为
(-3,-4),则x轴与⊙A的位置关系是_____, y轴与⊙A的位置关系是_____。
B
C
4
3
相离
相切
-1
-1
拓展延伸
.(-3,-4)
O
x
y
B
C
4
3
-1
-1
若⊙A要与x轴相切,则⊙A该向上移动多少个单位?若⊙A要与x轴相交呢?
变式训练