4.2.2 直线、射线、线段
(第二课时)
人教版数学七年级上册
第四章 第二节
学习目标:
1. 用尺规画一条线段等于已知线段,会比较两条线段的长短.
2. 理解线段等分点的意义;能够运用线段的和、差、倍、分关系求线段的长度.
3. 体会文字语言、符号语言和图形语言的相互转化;了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用.
1
一、新知突破
2
二、典型例题
3
三、课堂练习
目 录
1
一、新知突破
看下面这三幅图片谁高谁矮?你是依据什么判断的 ?
观察这三组图形,你能比较出每组图形中线段 a 和 b 的长短吗?
三组图形中,线段a与b的长度均相等
很多时候,眼见未必为实. 准确比较线段的长短还需要更加严谨的办法.
(1)
(2)
(3)
a
b
a
a
b
b
探究1
做手工时,在没有刻度尺的条件下,若想从较长的木棍上截下一段,使截下的木棒等于另一根短木棒的长,我们常采用以上办法.
探究1
画在黑板上的线段是无法移动的,在只有圆规和无刻度的直尺的情况下,请大家想想办法,如何再画一条与它相等的线段?
提示:在可打开角度的最大范围内,圆规可截取任意长度,相当于可以移动的“小木棍”.
想一想
作一条线段等于已知线段.
已知:线段 a,作一条线段 AB,使 AB=a.
第一步:用直尺画射线 AF;
第二步:用圆规在射线 AF 上截取
AB = a.
∴ 线段 AB 为所求.
a
A F
a
B
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?
160cm
170cm
说一说
比较两个同学高矮的方法:
——叠合法.
②让两个同学站在同一平地上,脚底平齐,观看
两人的头顶,直接比出高矮.
①用卷尺分别度量出两个同学的身高,将所得的
数值进行比较.
——度量法.
D
C
B
试比较线段AB,CD的长短.
(1) 度量法;
(2) 叠合法
将其中一条线段“移”到另一条线段上,使其一端点与另一线段的一端点重合,然后观察两条线段另外两个端点的位置作比较.
(A)
C D
A B
尺规作图
作一条线段等于已知线段
已知:线段 a,作一条线段 AB,使 AB=a.
第一步:用直尺画射线 AF;
第二步:用圆规在射线 AF 上截取 AB = a.
所以线段 AB 为所求线段.
a
A F
a
B
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
尺规作图的要点:
1.直尺只能用来画线,不能量距;
2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
例:已知线段a、b,用尺规作一条线段c,使 c = a+b.
a
画法:
1.画射线AD;
A
D
2.用圆规在射线AD上截取AB=a;
3.用圆规在射线BD上截取BC=b;
B
a
线段AC就是所求的线段.
c
线段c的长度是线段a,b的长度的和,我们就说线段c是线段a,b的和,记做c=a+b.
b
C
b
C
D
1. 若点 A 与点 C 重合,点 B 落
在C,D之间,那么 AB CD.
(A)
B
<
叠合法结论
C
D
A
B
B
(A)
2. 若点 A 与点 C 重合,点 B 与
点 D ,那么 AB = CD.
3. 若点 A 与点 C 重合,点 B 落
在 CD 的延长线上,那么 AB CD.
重合
>
B
A
B
A
C
D
(A)
(B)
在直线上画出线段 AB=a?,再在 AB 的延长线上画线段 BC=b,线段 AC 就是 与 的和,记作 AC= . 如果在 AB 上画线段 BD=b,那么线段 AD 就是 与 的差,记作AD= .
A
B
C
D
a+b
a–b
a
b
b
a
b
a+b
a
b
a–b
1. 如图,点B,C在线段 AD 上则AB+BC=____; AD-CD=___;BC= ___ -___= ___ - ___.
A
B
C
D
AC
AC
AC
AB
BD
CD
2. 如图,已知线段a,b,画一条线段AB,使 AB=2a-b.
a
b
A
B
2a-b
2a
b
在一张纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点处于线段的什么位置?
A
B
M
A
B
M
如图,点 M 把线段 AB 分成相等的两条线段AM 与 BM,点 M 叫做线段 AB 的中点.类似的,还有线段的三等分点、四等分点等.
线段的三等分点
线段的四等分点
A
a
a
M
B
M 是线段 AB 的中点.
几何语言:∵ M 是线段 AB 的中点
∴ AM = MB = AB
( 或 AB = 2 AM = 2 MB )
反之也成立:∵ AM = MB = AB
( 或 AB = 2 AM = 2 AB )
∴ M 是线段 AB 的中点
点 M , N 是线段 AB 的三等分点:
AM = MN = NB = ___ AB
(或 AB = ___AM = ___ MN = ___NB)
3
3
3
N
M
B
A
求线段的长度时,当题目中涉及到线段长度的比例或倍分关系时,通常可以设未知数,运用方程思想求解.
归纳总结
如图:从 A 地到 B 地有四条道路,除它们外能否再修一条从 A 地到 B 地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.
?
?
A
B
议一议
经过比较,我们可以得到一个关于线段的基本事实:
两点的所有连线中,线段最短.
连接两点间的线段的长度,叫做
这两点的距离.
?
?
A
B
简单说成:两点之间,线段最短.
你能举出这条性质在生活中的应用吗?
两点之间线段最短.
如图,这是 A,B 两地之间的公路,在公路工程改造计划时,为使 A,B 两地行程最短,应如何设计线路?请在图中画出,并说明理由.
.
B
A
.
想一想
把原来弯曲的河道改直,A,B 两地间的河道长度有什么变化?
A
B
A,B 两地间的河道长度变短.
想一想
2
二、典型例题
若 AB = 6cm,点 C 是线段 AB 的中点,点 D是线段 CB 的中点,求:线段 AD 的长是多少?
解:∵ C 是线段 AB 的中点,
∵ D 是线段 CB 的中点,
∴ AC = CB = AB = ×6= 3 (cm).
∴ CD = CB = ×3=1.5 (cm).
∴ AD =AC + CD = 3 + 1.5 = 4.5 (cm).
A C B
D
【例1】
如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.
F
E
C
B
D
A
【分析】根据已知条件AB:BC:CD=3:2:5,不妨设AB=3x,BC=2x,CD=
5x,然后运用线段的和差倍分,用含x的代数式表示EF的长,从而得到一个关于x的一元一次方程,解方程,得到x的值,即可得到所求各线段的长.
【例2】
如图,AB+BC AC,AC+BC AB,AB+AC BC (填“>”“<”或“=”). 其中蕴含的数学道理是 .
>
两点之间线段最短
>
>
A
B
C
【例3】
在一条笔直的公路两侧,分别有 A,B 两个村庄, 如图,现在要在公路 l 上建一个汽车站 C,使汽车站到 A,B 两村庄的距离之和最小,请在图中画出汽车站的位置.
C
A
B
l
【例4】
3
三、课堂练习
1. 下列说法正确的是 ( )
A. 两点间距离的定义是指两点之间的线段
B. 两点之间的距离是指两点之间的直线
C. 两点之间的距离是指连接两点之间线段的长度
D. 两点之间的距离是两点之间的直线的长度
2. 如图,AC = DB,则图中另外两条相等的线段为_____________.
C
A C D B
AD=BC
练 习
3.已知线段 AB = 6 cm,延长 AB 到 C,使 BC = 2 AB,若 D 为 AB 的中点,则线段 DC 的长为________.
C
A
D
B
15 cm
4.点A,B,C在同一条数轴上,其中点A,B表示的数分别是-3,1,若BC=5,则AC=_________.
1或9
练 习
5.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.
F
E
B
D
C
A
【分析】根据已知条件,不妨设BD=xcm,则AB=3xcm,CD=4xcm,易得AC=
6xcm.在由线段中点的定义及线段的和差关系,用含x的代数式表示EF的长,从而得到一个一元一次方程,求解即可.
练 习
解:设BD=xcm,则AB=3xcm,CD=4xcm,AC =6xcm,
因为E、F分别是AB、CD的中点,
所以
所以EF=AC-AE-CF=
所以AB=3xcm=12cm,CD=4xcm=16cm.
F
E
B
D
C
A
因为EF=10,所以 x=10,解得x=4.
线段长短的比较与运算
线段长短的比较
基本事实
线段的和差
度量法
叠合法
中点
两点间的距离
思想方法
方程思想
分类思想
基本作图
谢 谢 !