课题:梯形的面积
教学目标:
1、通过动手操作,使学生经历计算公式的推导过程,体验“转化”思想,培养学生的迁移类推能力和抽象概括能力。
2、理解并掌握梯形面积的计算公式,并能正确地计算梯形的面积。
3、能够运用所学的面积公式灵活解决实际问题,提高学生分析问题、解决问题的能力。
重难点:
重点:理解并掌握梯形的面积计算公式——(突破方法:学生操作,教师演示,讲练结合)
难点:理解梯形的面积计算公式的推导过程——(突破方法:动手操作,分析归纳)
教学准备:
两个完全相同的梯形。
前置作业:根据已有知识经验探究梯形的面积公式。
教学过程:
一、创设趣味情境,导入新课
1、大家认识懒羊羊吗?他最爱吃什么?(青草)有一天他在小河边散步,突然看见一块青草地,(出示图片)大家看,这块草地的形状是:梯形。懒羊羊望着青草地,馋得直流口水,他刚想吃,村长来了,村长说,要求出它的面积才能吃!这可难倒了懒羊羊,怎样求出草地面积呢?你们愿意帮助他吗?
这就是今天我们要研究的内容。(板书:梯形的面积)
(设计意图:《数学课程标准》提出:学生数学学习的内容应当是现实的、有意义的、富有挑战性的。这里创设一个学生感兴趣的情境,创建有深度的数学课堂,让学生感受学习数学的乐趣,学习数学是有意义的,增强学生学习数学的内在动力。)
2、复习导入
师:同学们想一想,前段时间我们刚刚研究了哪些图形的面积?(平行四边形,三角形)
你还记得这些图形的面积是如何推导出来的吗?
学生分别叙述平行四边形和三角形面积的推导过程。(割补法,拼摆法)
师:我们在推导这两个图形面积计算公式时,有什么共同点?(都是运用转化的方法,把未知化为已知)
师:这种方法很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,对于梯形的面积如何计算,同学们也可大胆地猜想一下,梯形可能转化成哪个我们已学过的图形呢?
现在大家把昨天的课前研究作业拿出来,在小组内交流,看看你们小组内有几种方法,互相检验方法是否正确,并一起总结出梯形的面积公式
二、探究新知。
1、分组实验,合作交流。
学生进行探究,教师进行针对性指导。
探究后,学生汇报推导,可能得出如下几种推导思路:
思路一:用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出梯形面积=(上底+下底)×高÷2
思路二:把梯形剪成两个三个角形(如下图),得出梯形的面积等于两个三角形面积之和,从而推出梯形的面积=上底×高÷2+下底×高÷2
思路三:把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出梯形的面积=上底×高+(下底-上底)×高÷2
学生在操作实验中,可能会出现更多的方法。(课本96页)
从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形。
平行四边形的底等于(梯形的上底+梯形的下底)
平行四边形的高等于梯形的高÷2
梯形的面积等于拼成的平行四边形的面积
所以,梯形的面积=(上底
+下底)×高÷2
【设计意图:利用讨论和交流形式,要求学生把自己操作—转化—推导的过程叙述出来,发展学生的思维和表达能力。】
师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”这个公式更简明易记。
师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用如何用字母公式表示?
明确后板书:S=(a+b)h÷2
(设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。我们研究课题的主题是:高效课堂师生思维方式与思维习惯的研究,为了较好的训练学生的思维方式与习惯,不能局限在教材上出示的方法,应当在推导公式环节上放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。)
三、反馈应用。
1懒羊羊家的墙壁画是三峡图片引入例三
我国三峡水电站大坝的横截面的一部分是梯形(如图),求它的面积。
生读题,审题,集体完成,集体订正。
2、懒羊羊开来了他的爱车“奔驰小跑”引入做一做。(书P89)
汽车侧面的两块玻璃是梯形(如图),求他们的面积。
3、巩固练习
(1)梯形面积是平行四边形面积的一半。(
)
(2)
两个完全相同的直角梯形可以拼成一个长方形。(
)
(3)一个梯形的上底是10cm,下底是20cm,高是10cm,它的面积是300平方厘米。(
)
四、课堂小结
今天你学习得快乐吗?你有什么收获?
(设计意图:让学生回顾学习过程,再一次体验学习经历,这个过程是学生对所学知识进行系统化、条理化的过程,不仅促进学生掌握了知识、领悟了方法,还培养了学生的语言表达能力,归纳概括能力,关注了学生情感的体验。)
附板书设计:
梯形的面积
平行四边形
平行四边形的面积
=
底
×
高
梯形---------
三角形
梯形的面积=(上底+下底)×高÷2
S
=
(
a
+
b
)
h÷2
长方形
教学反思:
本节课是在学行四边形和三角形面积计算的基础上进行教学的,学生会受三角形面积推导方法的影响,迁移到梯形面积公式的推导,学习起来还是没有难度的,本节通过预习让学生分小组汇报的形式进行的,汇报讲解,再让学生汇报不同的推导方法,然后自主练习。值得继续坚持的是教学设计和练习题的设计,但还有许多需要改进的地方:1.专项训练的铺垫设计练习不全面,梯形的认识方面的知识应该涉及一些,这源于对学情了解不透彻;2.错误资源没有合理利用,学生的错误资源非常的好,也是孩子的易错点,要让孩子真正明白错误的根源,建构知识的联系。这一点处理的太仓促,没有达到此题的出题意图;3.学生出现了不同的推导方法时处理不到位,需要再强化,为孩子们发散思维做导向;4.练习题的运用要加强,不仅要让学生明白是什么,还要让学生明白为什么;练习题的设计要多一些变式,注意类型的集中练习和分散练习;5.激励性语言太缺乏,讲课的语言没有节奏,重音不分,这也是我最欠缺的,也是最薄弱的一项,自己也很清楚自己在这一点的缺陷,但是却一直没有提高,做为一名教师,语言的感染力是最强的,特别是激励性的语言,对孩子们来说是非常重要的,它可以激励孩子们兴趣,引发孩子们的挑战欲望……语言的快慢高低直接影响着教学效果。语言真的是一门大艺术。一定要在这方面下工夫,让多年来的欠缺能够弥补。
在教学过程中有很多细节是不容忽视的,也是需要我注意和改进的,有很多时候细节决定成败。
高明
下底
上底
上底
高
下底
上底
下底
高
转化
第
4
页
共
5
页《梯形的面积》教学设计
教学内容:
青岛五?四学制2011课标版小学数学四年级下册P26~27页。
教学目标:
1、在自主探索、合作交流中经历梯形面积公式的推导过程,掌握梯形面积的计算方法,并能灵活运用公式解决相关的数学问题。
2、通过猜想、验证、实践等数学活动,发展空间观念和推理能力,获得解决问题的多种策略,感受数学方法的内在魅力。
3、通过探索活动,激发学习兴趣、培养严谨、科学的学习态度、勇于探索、乐于合作的精神,并感受数学与生活的密切联系,更体验数学“再创造”的乐趣,获得个性化的发展。
教学重点:
理解并掌握梯形面积的计算公式,并能运用公式解决简单的实际问题。
教学难点:
让学生利用已有知识和学习方法自主探究,发现并掌握梯形的面积计算方法。
教学准备:
梯形学具、电脑课件。
教学过程:
一、设置情境,导入“新课”。
1、情境创设。(电脑演示)
学校要制作几把椅子,小明和小兰发现椅子面是个梯形,这是梯形各部分的长度,想要制做这样一个椅子面要用多少平方厘米的木材?实际上求的是什么呢?(生答梯形的面积),今天我们就一起来探究《梯形的面积》。
2、提出问题
我们上节课学习三角形的面积时是怎样做的?(新知识转化成旧知识、变形)那么梯形呢?(转化推导)
同学们都有了推导公式的初步想法,不管你转化成什么图形,总的思路都是把梯形转化成我们学过的图形,找到图形间的联系,推导出梯形的面积公式。任何猜想都要经过验证,才能确定是否正确。接下来我们动手试一试呢?
三、实验操作,探究验证。
1、介绍学具。
老师为每位学生都准备了一个一般梯形、一个直角梯形、一个等腰梯形。想一想,用这些梯形能完成验证任务吗?如果不能,该怎么办?
2、研究建议
在你们动手操作之前,老师要提出这样三点建议:
(1)选择你们喜欢的梯形,先独立思考能把它转化成已学过的什么图形,再按照“转化—找联系—推导公共公式”的思路来研究;
(2)把你的方法与小组成员进行交流,共同验证;
(3)选择合适的方法交流汇报。我们比一比,看哪个小组想到的方法多,动作快。
3、合作学习
学生小组讨论,动手操作,教师巡视参与,了解情况。
4、汇报展示。
师:同学们已经用不同的方法把梯形转化成了多种图形,并推导出了梯形面积的计算公式,真是了不起!现在让我们共同来欣赏每个小组的成果。
方法一:梯形面积公式的推导方法与三角形面积公式的推导方法相同,运用“拼”的方法,选择两个形状相同、大小相等(完全一样)的梯形可以拼成一个平行四边形,每个梯形的面积就是所拼成的平行四边形面积的一半。梯形上底与下底的和等于拼成的平行四边形的底,梯形的高等于平行四边形的高,由此得出:
梯形的面积=平行四边形的面积÷2
=底×高÷2
=(上底+下底)×高÷2
课件演示变化过程。
这个方法很好!老师还发现有的同学拼成的是长方形,让我们来看看他们又是怎么拼的?
方法二:选择两个形状相同,大小相等的直角梯形可以拼成一个长方形。如图:
这样拼能推导出梯形的面积公式吗?请一位同学代表你们小组把拼组的思路叙述出来。
根据长方形的面积计算公式就可以推导出梯形的面积计算公式:
梯形的面积=长方形的面积÷2
=长×宽÷2
=(上底+下底)×高÷2
两种方法都是把两个完全相同的两个梯形经过“拼组”之后转化成一个已学过的图形。
四、归纳总结,提高认识
1、整理公式。
不同的方法虽然操作过程不同,但是它们之间是有共同点的,
这个共同点就是用“转化”的方法推导出梯形的面积计算公式为:
梯形的面积=(上底+下底)×高÷2
2、字母公式。
用s表示梯形的面积、用a表示梯形的上底、用b表示梯形的下底,h表示梯形的高,s=(a+b)×h÷2。
3、拓展探究
还有其他的方法更有意思呢么?
方法三:分割两个三角形(演示)
方法四:分割为一个平行四边形一个三角形(演示)
五、实践运用,解决问题
1、回归情境中的椅子面,用学到的知识解决问题。
2、课后练习。
五、板书设计
梯形的面积
平行四边形的面积=
底
×高÷2
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2梯形的面积
[教学目标]
1.在自主探索、合作交流中经历梯形面积公式的推导过程,掌握梯形面积的计算方法,并能灵活运用公式解决相关的数学问题。
2.通过猜想、验证、实践等数学活动,发展空间观念和推理能力,获得解决问题的多种策略,感受数学方法的内在魅力。
3.通过探索活动,激发学习兴趣、培养严谨、科学的学习态度、勇于探索、乐于合作的精神。
[教学重点]梯形面积公式的应用。
[教学难点]梯形面积公式的推导过程。
[教学准备]梯形卡纸、多媒体课件。
[教学过程]
一、基础训练
4.6+2.8=
2.5×4=
6.3÷3=
2.4÷0.08=
9.8-8.9=
0×13.5=
5.6÷7=
4.5×0.2=
6.7-2.3=
45.6÷1=
3.2÷0.4=
6.21÷3=
请看大屏幕,口算,看谁算得又对又快。
看来大家都算完啦,谁来说呢?(2人)
现在请同桌一人一个说结果。
【设计意图】课前口算,提高学生的计算能力,为了让每一位学生参与到课堂之中,采取多种形式进行口算训练。
复习旧知,进行铺垫
同学们,我们已经研究了那些图形的面积呢?
预设:(平行四边形,三角形)
在研究平行四边形面积时,我们是通过什么方法研究的?面积公式又是什么呢?
那三角形呢?面积公式又是什么呢?如何用字母表示。
今天我们再来研究一种图形的面积,认识它吗?
关于梯形你已经了解了哪些知识呢?
【设计意图】复习旧知,唤醒学生知识间的联系,同时观察学生对旧知的掌握,做到心中有数。
三、创设情境,激发兴趣
师:工人叔叔在钉板凳呢,仔细观察情境图,你都看到了哪些信息?根据你看到的信息能提出什么数学问题?
不着急举手,好好想一想,有想法之后,把你的信息和问题连起来说给同桌听。
课件出示。
哪位同学来汇报呢?
谁还想说。
现在我们一起把信息和问题连起来读一遍。
对呀,求椅子面的面积实际上就是求。(对,梯形的面积)
师:今天我们一起来研究梯形的面积。(板书课题)在我们的生活中有很多这样的梯形需要我们计算它们的面积,但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?
【设计意图】创设与生活息息相关的情境,可以引导学生观察生活问题,提出数学问题,能引发学生思考并产生对“梯形面积与什么有关”、“怎样推导梯形面积”的问题,进而调动学生的积极性,激发学生探究的欲望。
四、小组合作,探究新知
下面我们以4人一小组进行讨论交流,在交流之前,先看要求。
齐读要求:
想一想。求椅子面的面积,实际上就是求什么图形的面积?
猜一猜。可以把梯形转化成什么图形来研究?会验证你的猜想吗?
做一做。利用学具拼一拼,摆一摆,看看你有什么发现。
先好好想一想,准备怎样进行探究呢?好,开始吧
组长做好组织交流。
看来,同学们都有想法了,哪个小组来汇报呢?其他小组认真听,看他们说的和你想的一样吗?
将两个完全相同的梯形通过旋转平移得到一个平行四边形,梯形的面积是平行四边形面积的一半,平行四边形的底相当于梯形上底和下底的和,平行四边形的高是梯形的高。
梯形的面积
=
平行四边形的面积
÷2
=
底
×
高÷2
=(上底+下底)
×
高÷2
谁还有不同的想法吗?
【设计意图】探究环节给予学生充足的时间和空间,让孩子借助学具动手操作,观察发现。在全班的交流过程中相互启发,拓展思维。适时借助课件可以帮助学生更为直观清晰的观察图形各部分之间的关系,将整个推导过程更加直观化。
五、操作验证,总结公式
师:同学们真爱动脑筋,想出了这么多的方法,老师非常欣赏你们的创新能力。这些方法虽然操作过程不同,但是同学们一定感觉到它们之间是有共同点的,谁来说一说共同点是什么呢?
预设:这几种方法都是将梯形转化成了我们学过的图形。
师:我们用“转化”的方法推导出梯形的面积计算公式为:
梯形的面积=(上底+下底)×高÷2
梯形的面积公式用字母怎样表示?
预设:S=(a+b)·h÷2
【设计意图】借助前面研究的经验,让学生自主归纳,营造生生互动的学习氛围,会让学生体验到自主探究获得成功的喜悦,激发学生学习数学的热情。最后,教师引领学生回顾整个研究过程,总结研究的方法,帮助学生积累数学活动经验。
应用公式,解决问题
同学们,现在你会用梯形的面积求出椅子面的面积吗?在练习本上写一写,算一算。
指名答
(32+36)×32÷2
=68×32÷2
=2176÷2
=1088(平方厘米)
现在打开课本27页,计算第一题。
求下列梯形的面积。
【设计意图】整个练习设计层次清晰,既有基础练习,又有拓展练习,并注重让学生在练习中有新的思考,新的感悟,从而产生新的问题。
七、全课总结,回顾整理
同学们,这节课我们学习的主要内容是什么?通过学习你有什么收获呢?把你的收获和同桌说一说。
【设计意图】通过回顾反思,引导学生从知识、方法等方面进行回顾,帮助学生积累一些基本的数学活动经验,并对课堂上的表现进行自我反思和肯定,获得良好的数学学习体验,培养浓厚的数学学习兴趣。
[板书设计]
梯形面积
梯形面积
平行四边形的面积÷2
=底X高÷2
=(上底+下底)X高÷2
S=(a+b)X
h÷2
图1《梯形的面积》教学设计
教材分析:
《梯形的面积》是四年级下册的内容。本节是在学生掌握梯形特征,学会平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材的编排不同于平行四边形和三角形,没有安排用数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积,使学生进一步学习用转化的方法思考问题。教材中的插图给出了转化的操作过程,同时继续渗透旋转和平移的思想,以便于学生理解。在动手操作的基础上,引导学生自己来总结梯形面积的计算公式,通过概括总结,提高学生的思维水平。进而再利用字母表述出新学的计算公式,以提高学生的抽象概括能力。最后通过例题进一步说明怎样应用梯形面积的计算公式来解决实际问题,并进行相应的练习。
教学目标:
1、在自主探索、合作交流中经历梯形面积公式的推导过程,掌握梯形面积的计算方法,并能灵活运用公式解决相关的数学问题。
2、通过观察、猜想、操作等数学活动,发展空间观念和推理能力获得解决问题的多种策略,感受数学方法的内在魅力。
3、体验数学“再创造”的乐趣,获得个性化的发展。
学情分析:
学生已经学行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具有了一定的探索图形的面积计算公式的经验,并初步领悟了“转化”的数学思想方法,具备了初步的归纳、对比和推理的数学活动经验,让学生用同样的推理方法推出梯形面积的公式是可能的。只是学生在推导计算公式时肯定有一定的难度,尤其是用割补法推导公式,因此我先让学生用拼摆两个相同的梯形的方法来推导公式,在此基础上再用割补法来推导公式,这样在掌握知识的同时,学生的思维也能得到充足的发展。使学生自己探索学习,最终获取知识和能力。
教学重点:探索并掌握梯形面积计算公式。
教学难点:理解梯形面积计算公式的推导过程。
教学准备:梯形学具、电子白板和多媒体课件。
教学过程:
一、铺垫孕伏,以旧引新
师:同学们,我们在学习平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?谁来说说平行四边形和三角形的面积是怎样推导出来的?
(根据学生所述,教师用多媒体课件演示平行四边形和三角形面积公式的推导过程,如下图所示。)
先把平行四边形转化为我们学过的长方形,再推导出平行四边形的面积公式。
先把两个完全一样的三角形转化为一个平行四边形,再推导出三角形面积公式。
师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现它们之间的联系,进而推导出面积计算的公式。
设计意图:采用多媒体演示,直观地再现平行四边形和三角形面积公式的推导过程,吸引了学生的注意力。与此同时,唤起学生的回忆,沟通了新旧知识的联系,为新知迁移做好准备。
二、创设情境,提出问题
1、情境创设。(多媒体课件演示)
师:某厂家要为幼儿园制作一批桌椅,桌面是梯形的(如上图),上底80厘米,下底120厘米,高70厘米,做这样一个桌面要用多大的木板是求什么?
(学生会异口同声说出“梯形的面积”,教师同步演示从实物图抽象出梯形图。)
(教师板书:梯形的面积)
设计意图:数学知识与学生生活实际相联系,使学生容易感受、体会到数学知识的实际意义及其用处。所以,从学生的生活经验出发,呈现梯形的实际情境,让学生感受计算梯形面积的必要性。
2、提出问题。
师:在我们的生活中有很多这样的梯形需要我们计算它们的面积,但是梯形面积的计算方法我们还没有学过,你猜想梯形的面积可能与什么有关?你想怎样推导出梯形面积的计算方法呢?
学情预设:学生会根据已有的知识经验判断梯形的面积可能与它的上底、下底和高有关,并猜想推导梯形的面积计算公式要把它转化成一个已经学过的图形,学生可能会说出平行四边形、长方形甚至是三角形。教师在这里要对学生的多种猜想都予以积极评价。
师:同学们都有了推导公式的初步想法,不管你转化成什么图形,总的思路都是把梯形转化成我们学过的图形,找到图形间的联系,推导出梯形的面积公式。任何猜想都要经过验证,才能确定是否正确。那你想不想马上动手试一试呢?
设计意图:猜想验证的过程也是学生主动参与数学知识探索的过程。启发学生运用已学的知识,大胆提出猜测,激发学生探究新知识的欲望,又使学生明确了探究的目标与方向,即用科学探究的方法进行研究。体现了学生的主体地位,才能让学生真正经历知识的形成过程。
三、提供材料,自主探究
1、介绍学具。
师:老师为每位同学都准备了一个普通梯形、一个直角梯形、一个等腰梯形。想一想,用这些梯形能完成验证任务吗?如果不能,该怎么办?
设计意图:为学生准备一组这样的学具,是要激起学生学习的热情,激活经验储备,点燃创新思维的火花。只凭学生自己手中的梯形是完不成拼组的,需要到同学手中寻找他所需要的另外一个完全相同的梯形才能完成任务。
2、研究建议。
师:在你们动手操作之前,老师要提这样三点建议:(1)选择你们喜欢的梯形,先独立思考能把它转化成已学过的什么图形,再按照“转化—找联系—推导公式”的思路来研究;(2)把你的方法与小组成员进行交流,共同验证;(3)选择合适的方法交流汇报。我们比一比,哪个小组想到的方法多,动作快。
设计意图:由原来向学生提供操作要求转变成向学生提出研究建议,体现了教师角色的转变。在实际研究中,教师让学生先独立思考,每个学生对问题有了自己个性化的认识后,再引导学生进行合作交流。让学生在观察、比较、判断、交流、反思等活动中自己实现知识的意义生成和构建,同时会有多种不同的策略和解决办法,使学生在交流中学会倾听,在倾听中拓展思维。
3、合作学习。
学生小组讨论,动手操作,教师巡视参与,了解情况。
学情预设:在操作实验中,学生的思维水平不同,选择的学具不同,可能会出现多种解决问题的策略,有分割的方法,也有拼摆的方法;有转化为平行四边形进行推导的,也有转化为三角形进行推导的。教师要留给学生比较充分的操作和交流的时间和空间,同时要及时进行点拔和引导。
4、汇报展示。(教师利用多媒体课件和电子白板帮助学生演示“拼组、割补和添补”图形的变化过程。)
师:同学们已经用不同的方法把梯形转化成了多种图形,并推导出梯形面积的计算公式,真是了不起!现在让我们共同来欣赏每个小组的成果。
(1)展台展示“拼组”的方法。
学生一边演示拼组过程,一边介绍方法步骤。
方法一:选择两个形状相同、大小相等(完全一样)的梯形可以拼成一个平行四边形(如下图所示),每个梯形的面积就是所拼成的平行四边形面积的一半。梯形上底与下底的和等于拼成的平行四边形的底,梯形的高等于平行四边形的高,由此得出:
梯形的面积=平行四边形的面积÷2
=底×高÷2
=(上底+下底)×高÷2
师:这个方法很好!老师还发现有的同学拼成的是长方形,让我们来看看他们又是怎么拼的呢?
方法二:选择两个形状相同、大小相等的直角梯形可以拼成一个长方形。
如图:
师:这样拼能推导出梯形的面积公式吗?请一位同学代表你们小组把拼组的思路叙述出来。
教学建议:这个环节中要求学生的表述要有条理、思路要清晰。因为每个梯形的面积就是所拼成的长方形面积的一半,直角梯形上底与下底的和等于拼成的长方形的长,梯形的高等于长方形的宽,所以,根据长方形的面积计算公式就可推导出梯形的面积计算公式:
梯形的面积=长方形的面积÷2
=长×宽÷2
=(上底+下底)×高÷2
师:同学们不仅动手能力特别强,公式的推导过程也叙述得特别条理、清晰。那么两个怎样的梯形可以拼成正方形呢?同学们试着想象一下。
学情预设:学生通过观察、想象、实际操作,会得出结论:形状相同、大小相等的直角梯形且上底与下底的和正好与梯形的高相等,这样的两个梯形可以
拼成一个正方形。
师:对!只要是两个完全一样的梯形就能拼成一个平行四边形或长方形或正方形。
师:刚才展示的两种方法都是把两个完全相同的梯形经过“拼组”之后转化成一个已学过的图形。还有哪些同学的方法更有意思呢?快来展示吧!
(2)展台展示“割补”的方法。
师:有的同学只用自己手中的一个梯形就完成了任务,我们快来分享他们的成果吧!
方法三:把梯形切割成两块,一块是平行四边形,一块是三角形(如下图)。
平行四边形的底就是原梯形的上底,三角形的底是梯形的下底与上底之差,而平行四边形和三角形的高都等于梯形的高。然后算出平行四边形和三角形的面积和。
师:你真聪明:把一个梯形分割成一个三角形和一个平行四边形,有创意!
方法四:把一个梯形分割成两个三角形a和b。(如下图所示)
a的面积=上底×高÷2
b的面积=下底×高÷2
所以,梯形的面积=a的面积+b的面积
=上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
学情预设:对上述两种推导过程有部分学生感到理解困难,教师要发挥引导者、合作者的作用,及时进行点拨指导,帮助学生逐步理清思路。
师:在公式的推导过程中应用了乘法分配律,非常巧妙,很独特!
师:噢,有的同学也只用自己手中的一个梯形就完成了任务,方法又与上面的不同,大家动手与他们一起来验证吧!
方法五:把一个梯形剪成两个梯形再拼成一个平行四边形。
学情预设:通过实际操作,将梯形对折,使上下底重合,沿折线将梯形剪开,就可以拼成平行四边形(如下图所示)。
像这样拼成的平行四边形的底就是梯形的(上底+下底),高是梯形高的一半。平行四边形的面积就是梯形的面积,所以:
梯形的面积=(上底+下底)×高÷2
(三)电子白板演示添补法
师:有的同学把自己手中的一个梯形添加一个我们学过的图形也较好地完成了任务,我们来欣赏一下他们的创意吧!
方法六:把梯形的两个缺角补上,正好补成一个长方形(如下图),则:
长方形的面积=下底×高,而补上的两个小三角形的总面积为:
小三角形面积和=(下底-上底)×高÷2
所以梯形面积
=
长方形的面积-小三角形面积和
=下底×高-(下底-上底)×高÷2
=
[下底-(下底-上底)÷2]
×高
=
[2×下底-(下底-上底)]
×高÷2
=(上底+下底)×高÷2
方法七:在梯形的一侧补上一个三角形,使整个图形成为一个平行四边形。平行四边形的底就是梯形的下底,三角形的底恰好是梯形的下底与上底之差。它们的高都是梯形的高。(如下图)最后用平行四边形面积减去三角形面积即可。
师:同学们能够设法将新问题转化成已经学过的问题来解决,这本身就是一种了不起的创造。善于观察,勇于实践,才能给大家带来如此多的发现。在这些方法中,你最喜欢哪一种?能说说喜欢的理由吗?(教师大屏幕呈现学生喜欢的方法)
设计意图:多媒体演示,能使原来用实物不好展示的部分得到充分展示,降低了观察的难度,突出了观察的重点。随着实物—实物图—平面图的显示,学生的空间意识一步步得到增强,空间观念不断得到发展。同时,由于多媒体提供悦耳的音乐、和谐的色彩,流畅的动感,给学生以强烈的美感,在这种情景交融的气氛中,学生的思维被进一步有效激活,大大提高了教学效果。
建议:在整个汇报展示过程中,教师要把学生当成教学资源,注意反馈学生的不同方法和想法,并组织学生实际操作,互动交流。或启迪学生深思,或引发学生争论,或碰撞思维火花,让学生在对话中达成意义的理解和方法的掌握。
四、归纳总结,提高认识
整理公式。
师:同学们真爱动脑筋,想出了这么多的方法,老师非常欣赏你们的创新能力。这些方法虽然操作过程不同,但是同学们一定感觉到它们之间是有共同点的,谁来说一说共同点是什么呢?
知识链接:这个共同点就是用“转化”的方法推导出梯形的面积计算公式为:梯形的面积=(上底+下底)×高÷2。
自学字母公式。
师:前面我们学行四边形和三角形面积计算公式的字母表示方法,简单明了,便于记忆,同学们非常喜欢。现在就请同学们自己用字母表示梯形的面积计算公式。
知识链接:用s表示梯形的面积,用a表示梯形的上底,b表示梯形的下底,h表示梯形的高,s=(a+b)×h÷2。
五、实践运用,解决问题
1、出示例题:我国三峡水电站大坝的横截面的一部分是梯形,求它的面积。
(课件动态演示横截面的示意图,帮助学生理解横截面的含义,明确直角梯
形的高也是它的一个腰长。)
2、师:梯形的的用途很广泛,在很多物体中经常会看到梯形。下面我们来解决一些日常生活中的问题。(多媒体课件出示)
(1)出示篮球场的罚球区图形,请计算出罚球区的面积。
(2)出示汽车的侧门窗户,要制作这扇车门的窗户需要多少平方厘米的有机玻璃?
3、算出幼儿园需要的梯形桌面的面积。
4、(出示图)师:这是学校靠墙的一个花坛,周围篱笆的长度是46m,你能
算出它的面积吗?比一比,谁的观察力最强,解决问题的本领最高?
设计意图:学习生活中的数学是课标精神的体现。练习题的设计,把所学知识与实际生活紧密联系起来,既有基础知识和基本技能的训练,又有综合性的题目,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。
六、反思收获,拓展延伸
师:这节课同学们在探索的过程中发挥了自己的聪明才智,创造出了多种推导梯形面积计算公式的方法,而且能够用所学知识解决生活中的的问题,老师相信同学们一定有许多的收获。你还有什么疑问吗?
说明:练习和总结的环节要注意三点:一要加强对个别学有困难的学生的指导和帮助;二要对学生学习过程中可能出现的问题及时进行纠正;三要关注学生对数学课堂学习收获的表述,促使学生形成积极的学习心理。
[设计思路]
本课的设计体现了以下几个特点:
1、力求体现“以学生发展为本”的课堂教学理念
学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在思路上淡化教师教的痕迹,突出了学生学的过程。为学生创设了一种“猜想”的学习情境,先让学生大胆猜想,进而是实践检验。“猜想”成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。
2、以活动为主线,以“动”促“思”
本节课力求让学生自己去发现和概括梯形的面积公式,在探究的过程中发展学生思维的创造性。为了达到这一目的,让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“拼、剪、割、补”的活动过程,让学生在活动中发现,活动中体验,活动中发散,活动中发展。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探索学习的兴趣,同时学生思维的的深度和广度也得到了有效的培养。
3、使学生的自主探索在“时空”上得到保证
一系列的教学设计充分体现学生的主体意识,用眼看、用手做、用耳听,用嘴说,用脑想,让每一位学生都在亲自实践中认识理解新知。而教师则体现指导者、参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,教师实施点拨诱导,促其思维顺畅、变通,最后使学生明确,尽管剪拼的方法不同,但都达到了“殊途同归”之效,即从不同的思维角度验证了梯形的面积公式。将发散与收敛、直觉与逻辑这种对立统一的思维方式有机地融为主体动态式的思维结构。
PAGE
7