人教版数学八年级下册 20.2 数据的波动程度课时1 方差 课件(24张)

文档属性

名称 人教版数学八年级下册 20.2 数据的波动程度课时1 方差 课件(24张)
格式 pptx
文件大小 1.4MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-01-24 10:46:15

图片预览

文档简介

第二十章 数据的分析
20.2数据的波动程度
课时1 方差
1.理解方差的概念及统计学意义;
2.会计算一组数据的方差; (重点)
3.能够运用方差判断数据的波动程度,并解决简单的实际问题.(难点)
学习目标
新课导入
问题引入
刘教练到我班选拔一名篮球队员,刘教练对陈方楷和李霖东两名学生进行5次投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.
队 员
第 1次
第2次
第3次
第4次
第5次
李霖东
7
8
8
8
9
陈方楷
10
6
10
6
8
(1)请求出以上两组数据的平均数、中位数、众数;
(3)若要选一个投篮稳定的队员,选谁更好?
(2)用复式折线统计图表示上述数据;
新课讲解
知识点1 方差的意义
  问题1 农科院计划为某地选择合适的甜玉米种子.
选择种子时,甜玉米的产量和产量的稳定性是农科院
所关心的问题.为了解甲、乙两种甜玉米种子的相关
情况,农科院各用10 块自然条件相同的试验田进行试
验,得到各试验田每公顷
的产量(单位:t)如下表:
新课讲解

7.65
7.50
7.62
7.59
7.65
7.64
7.50
7.40
7.41
7.41

7.55
7.56
7.53
7.44
7.49
7.52
7.58
7.46
7.53
7.49
根据这些数据估计,农科院应该选择哪种甜玉米种子呢?
新课讲解
(1)甜玉米的产量可用什么量来描述?请计算后说明.
  说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.
  可估计这个地区种植这两种甜玉米的平均产量相差不大.

7.65
7.50
7.62
7.59
7.65
7.64
7.50
7.40
7.41
7.41

7.55
7.56
7.53
7.44
7.49
7.52
7.58
7.46
7.53
7.49
新课讲解
产量波动较大
产量波动较小
(2)如何考察一种甜玉米产量的稳定性呢?
①请设计统计图直观地反映出甜玉米产量的分布情况.  
甲种甜玉米的产量
乙种甜玉米的产量
新课讲解
1.方差的概念:
设有n个数据x1,x2,…,xn,各数据与它们的平均数 
的差的平方分别是 ,
我们用这些值的平均数,即
来衡量这组数据的波动大小,并把它叫作这组数据的方差.
知识要点
新课讲解
2.方差的意义
方差用来衡量一组数据的波动大小(即这组数据偏离平均数的大小).
方差越大,数据的波动越大;
方差越小,数据的波动越小.
知识要点
新课讲解
②请利用方差公式分析甲、乙两种甜玉米的波动程度.  
两组数据的方差分别是:
  据样本估计总体的统计思想,种乙种甜玉米产量较稳定.
  显然  >  ,即说明甲种甜玉米的波动较大,这与我们从产量分布图看到的结果一致.
新课讲解
【答】(1)平均数:6,方差:0;(2)平均数:6;方差:
(3)平均数:6,方差: ;(4)平均数:6,方差: .
1.用条形图表示下列各组数据,计算并比较它们的平
均数和方差,体会方差是怎样刻画数据的波动程度的.
(1)6 6 6 6 6 6;
(2)5 5 6 6 6 7 7;
(3)3 3 4 6 8 9 9;
(4)3 3 3 6 9 9 9.
练一练
新课讲解
2.如图是甲、乙两射击运动员的10 次射击训练成绩的折线统计图.观察图形,甲、乙这10 次射击成绩的方差哪个大?
【答】乙的射击成绩波动大,所以乙的方差大.
新课讲解
知识点2 方差的简单应用
1
2
九班和三班
表演啦啦操
新课讲解
问题2 在这次篮球联赛中,最后是九班和三班争夺这次篮球赛冠军, 赛前两个班的拉拉队都表演了啦啦操,参加表演的女同学的身高(单位:cm)分别是:
九班 163 163 165 165 165 166 166 167
三班 163 164 164 164 165 166 167 167
哪班啦啦操队女同学的身高更整齐?
(1)你是如何理解“整齐”的?
(2)从数据上看,你是如何判断那个队更整齐?
新课讲解
方法一:
方法二:
解: 取 a = 165
九班新数据为: -2,-2, 0, 0,0,1,1,2
直接求原数据的方差.
(一个学生在黑板上板书,其他学生在本上作答)
三班新数据为: -2,-1,-1,-1,0,1,2,2
求两组新数据方差.
新课讲解
方法拓展
任取一个基准数a
将原数据减去a,得到一组新数据
求新数据的方差
1
2
3
求一组较大数据的方差,有如下简便计算方法:
课堂小结
方差
方差的统计学意义(判断数据的波动程度):
方差越大(小),数据的波动越大(小).
公式:
当堂小练
1.样本方差的作用是( )
A.表示总体的平均水平
B.表示样本的平均水平
C.准确表示总体的波动大小
D.表示样本的波动大小,从而估计总体的波动大小
D
当堂小练
2.人数相同的八年级(1)、(2)两班学生在同一次数学单元测试中,班级平均分和方差下:
, , ,则成绩较为稳定的班级是( )
A.甲班 B.乙班
C.两班成绩一样稳定 D.无法确定
B
当堂小练
3.小凯同学参加数学竞赛训练,近期的五次测试成绩得分情况如图所示,则他这五次成绩的方差 为 .
100
当堂小练
4.在样本方差的计算公式
中, 数字10 表示___________ ,数字20表示 _______.
样本容量
平均数
5.五个数1,3,a,5,8的平均数是4,则a =_____,这五个数的方差_____.
3
5.6
拓展与延伸
6.为了从甲、乙两名学生中选择一人去参加电脑知识竞赛,在相同条件下对他们的电脑知识进行10次测验,成绩(单位:分)如下:
甲的成绩
76
84
90
84
81
87
88
81
85
84
乙的成绩
82
86
87
90
79
81
93
90
74
78
(1)填写下表:
同学
平均成绩
中位数
众数
方差
85分以上的频率

84
84
0.3

84
84
34
84
90
0.5
14.4
拓展与延伸
(2)利用以上信息,请从不同的角度对甲、乙两名同学的成绩进行评价.
解:从众数看,甲成绩的众数为84分,乙成绩的众数是90分,乙的成绩比甲好;
从方差看,s2甲=14.4, s2乙=34,甲的成绩比乙相对稳定;从甲、乙的中位数、平均数看,中位数、平均数都是84分,两人成绩一样好;
从频率看,甲85分以上的次数比乙少,乙的成绩比甲好.
布置作业
请完成对应习题