第二十章 数据的分析
20.2数据的波动程度
课时2 数据分析的应用
1.能熟练计算一组数据的方差;(重点)
2.能用样本的方差估计总体的方差及根据方差做决策.(难点)
学习目标
新课导入
方差的计算公式,请举例说明方差的意义.
方差的适用条件:
当两组数据的平均数相等或相近时,才利用方差来
判断它们的波动情况.
方差越大,数据的波动越大;
方差越小,数据的波动越小.
复习引入
新课讲解
知识点1 根据方差做决策
每个鸡腿的质量;鸡腿质量的稳定性.
抽样调查.
问题1 某快餐公司的香辣鸡腿很受消费者欢迎.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.
(1)可通过哪些统计量来关注鸡腿的质量?
(2)如何获取数据?
新课讲解
例1 在问题1中,检查人员从两家的鸡腿中各随机抽取15 个,记录它们的质量(单位:g)如下表所示.根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?
解:样本数据的平均数分别是:
样本平均数相同,
估计这批鸡腿的平均质量相近.
甲
74
74
75
74
76
73
76
73
76
75
78
77
74
72
73
乙
75
73
79
72
76
71
73
72
78
74
77
78
80
71
75
新课讲解
解:样本数据的方差分别是:
由 可知,两家加工厂的鸡腿质量大致相等;
由 < 可知,甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选购甲加工厂生产的鸡腿.
新课讲解
例2 在某旅游景区上山的一条小路上,有一些断断续续高低不等的台阶.如图是其中的甲、乙两段台阶路的示意图(图中数字表示每一阶的高度,单位:cm).哪段台阶路走起来更舒服?为什么?
21
20
21
19
19
20
17
24
20
17
19
23
甲
乙
分析:通过计算两段台阶的方差,比较波动性大小.
新课讲解
∴走甲台阶的波动性更,走起来更舒适.
解:
∵
新课讲解
队员
平均成绩
方差
甲
9.7
2.12
乙
9.6
0.56
丙
9.8
0.56
丁
9.6
1.34
甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是( )
A. 甲 B. 乙 C.丙 D.丁
C
练一练
新课讲解
议一议
(1)在解决实际问题时,方差的作用是什么?
反映数据的波动大小.
方差越大,数据的波动越大;方差越小,数据
的波动越小,可用样本方差估计总体方差.
(2)运用方差解决实际问题的一般步骤是怎样的?
先计算样本数据平均数,当两组数据的平均数相等或相近时,再利用样本方差来估计总体数据的波动情况.
新课讲解
例3 某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛.在最近10次选拔赛中,他们的成绩(单位: cm)如下:
甲:585 596 610 598 612 597 604 600 613 601
乙:613 618 580 574 618 593 585 590 598 624
(1)这两名运动员的运动成绩各有何特点?
分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大.
新课讲解
解:
(585+596+610+598+612+597+604+600+613+601)
=601.6,s2甲≈65.84;
(613+618+580+574+618+593+585+590+598+624)
=599.3,s2乙≈284.21.
由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定.但甲队员的成绩不突出,乙队员和甲队员相比比较突出.
新课讲解
(2)历届比赛表明,成绩达到5.96 m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛.
解:从平均数分析可知,甲、乙两队员都有夺冠的可能.但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大.
但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛.
课堂小结
根据方差做决策方差
方差的作用:比较数据的稳定性
利用样本方差估计总体方差
当堂小练
1.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数 (单位:分)及方差s2如下表所示:
如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是 .
甲
乙
丙
丁
94
98
98
96
s2
1
1.2
1
1.8
丙
当堂小练
2.某篮球队对运动员进行3分球投篮成绩测试,
每人每天投3分球10次,对甲、乙两名队员在
五天中进球的个数统计结果如下:
经过计算,甲进球的平均数为 =8,
方差为 .
队员
每人每天进球数
甲
10
6
10
6
8
乙
7
9
7
8
9
当堂小练
(1)求乙进球的平均数和方差;
(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?
拓展与延伸
3.在学校,小明本学期五次测验的数学成绩和英语成绩分别如下(单位:分)
数学
70
95
75
95
90
英语
80
85
90
85
85
通过对小明的两科成绩进行分析,你有何看法?对小明的学习你有什么建议?
拓展与延伸
解:数学、英语的平均分都是85分.
数学成绩的方差为110,英语成绩的方差为10.
建议:英语较稳定但要提高; 数学不够稳定有待努力进步!
布置作业
请完成对应习题