2020-2021学年度第二学期初三数学冀教版(2012)九年级下册第二十九章直线与圆的位置关系单元测试
一、选择题
1.弦是圆内接正三角形的边,弦是同圆内接正六边形的一边,则的度数为(
)
A.
B.
C.或
D.或
2.若正六边形的边长为,则其外接圆半径与内切圆半径的比为(
)
A.
B.
C.
D.
3.直角三角形两直角边长分别为和,那么它的外接圆的直径是(
)
A.1
B.2
C.3
D.4
4.已知正六边形的面积为,则其边长为(
)
A.
B.
C.
D.
5.如图,是的直径,,,以为边作圆的内接正多边形,则这个正多边形是(
)
A.正七边形
B.正八边形
C.正六边形
D.正十边形
6.正三角形内切圆半径r与外接圆半径R之间的关系为(
)
A.4R=5r
B.3R=4r
C.2R=3r
D.R=2r
7.已知的半径为,点的坐标为,点的坐标为,则点的位置(
)
A.在外
B.在上
C.在内
D.不能确定
8.如图,在矩形中,,,是以为直径的圆,则直线与的位置关系是(
)
A.相交
B.相切
C.相离
D.无法确定
9.已知是的直径,点是延长线上的一个动点,过作的切线,切点为,的平分线交于点,则等于(
)
A.
B.
C.
D.
10.中,,,,若以为圆心,为半径作圆,则斜边与的位置关系是(
)
A.相离
B.相切
C.相交
D.不能确定
11.下列说法:①三点确定一个圆;②平分弦的直径必垂直于这条弦;③圆周角等于圆心角的一半;④等弧所对的圆心角相等;⑤各角相等的圆内接多边形是正多边形.其中正确的有(
)
A.个
B.个
C.个
D.个
12.如图,等腰三角形中,,,以为圆心,为直径的圆与直线的位置关系为(
)
A.相离
B.相切
C.相交
D.相切或相离
13.折叠圆心为、半径为的圆形纸片,使圆周上的某一点与圆心重合.对圆周上的每一点,都这样折叠纸片,从而都有一条折痕.那么,所有折痕所在直线上点的全体为(
)
A.以为圆心、半径为的圆周
B.以为圆心、半径为的圆周
C.以为圆心、半径为的圆内部分
D.以为圆心、半径为的圆周及圆外部分
14.下列说法正确的是(
)
①三角形的外心到三角形三边的距离相等;②圆的切线垂直于半径;
③经过直径端点且与该直径垂直的直线是圆的切线;④过三点可以作且只可以作一个圆.
A.个
B.个
C.个
D.个
15.在所在平面内,与直线、直线、直线都相切的圆有(
)个
A.
B.
C.
D.
二、填空题
16.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为_____.
17.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是_______.
18.半径为1的圆内接正三角形的边长_____.
19.的半径是3cm,P是内一点,,则点P到上各点的最小距离是_____cm,最大距离是_____cm.
20.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为_______cm.
三、解答题
21.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.
(1)求BC的长;
(2)求证:PB是⊙O的切线.
22.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.
(1)求证:ED是⊙O的切线.
(2)当OA=3,AE=4时,求BC的长度.
23.如图,是的外接圆,的平分线与相交于点,过点作的切线,与的延长线交于点,与的延长线交于点.
试判断与的位置关系,并说明理由;
若,,求的半径.
24.如图,在中,,点在边上,过点且分别与边、相交于点、,为的切线,交于点.
求证:;
若,,,求的长.
参考答案
1.C2.B3.B4.A5.C6.D7.A8.C9.C10.C11.A12.B13.D14.A15.A
16.
17.8或10.
18.
19.2
4
20..
21.(1)2(2)略
22.(1)证明略;(2)10.
23.(1)BC∥EF,理由略;(2)⊙O的半径为2.5.
24.证明略;.