学科
数学
年级/册
二年级下册
教材版本
部编版小学数学教材
课题名称
第三章图形的运动(一)
教学目标
认识对称现象和轴对称图形
重难点分析
重点分析
知识点本身比较抽象:轴对称图形需要想象加实际操作相结合。
难点分析
学生空间想象能力较弱,理解困难:二年级学生的思维主要以形象思维为主,抽象逻辑思维较弱,在图形比较复杂的情况下,很难进行轴对称图形的判断。
教学方法
1.通过折一折,比一比,感受轴对称图形对折后完全重合的特点。?
2.通过观察、操作、想象初步认识对称现象和轴对称图形,能判断一个图形是否是轴对称图形。
教学环节
教学过程
导入
师:同学们喜欢做游戏吗?今天我们玩一个猜图形的游戏,根据物体的一部分,猜出这个物体是什么,好吗?
师:请看图,对,是剪刀,猜的真准,再来一个你猜出来了吗?到底是什么呢?我们一起来看,奥,是手套。
师:再来一幅,对,是螃蟹,那这个呢?你猜出来了吗?到底是什么呢?我们一起来看,奥,是飞机。
师:再来一幅,对,是灯笼,那这个呢?你猜出来了吗?到底是什么呢?我们一起来看,奥,是杯子。
师:通过刚才的猜图游戏,你发现左边的物体好猜还是右边的物体好猜?确实是左边的好猜,那为什么左边的物体好猜?
师:对,因为左边物体两边都是一样的,看到一半很容易想到另一半,右边物体两边都不一样。
师:看来还真不能怪有的同学猜的不好。像左边这些物体,两边的大小和形状都是一样的,在数学上,我们称这些物体都是对称的。今天这节课我们就一起来学习对称。
知识讲解
(难点突破)
(一)认识对称现象
师:像这样的对称现象在生活中有很多,试着说一说,你还见过哪些物体有这种对称的特征?
师:对,电视是对称的、黑板是对称的、天安门城楼也是对称的。
(二)认识轴对称图形
1.观察图形,初步认识
师:老师还带来了一些图片,它们是不是对称的呢?请同学们做出判断。
师:小衣服是-对称的。梳子-不是对称的。蝴蝶是-对称的。
师:音符呢?我想有同学认为是,有同学认为不是,我们先把它放在最下面。
师:小船是不是对称的?我想有的同学们也有不同意见,我也把它放在下面。
师:刚才同学们通过观察做出了判断,但是我们数学是一门非常严谨的学科,仅凭眼睛看就得出结论还有点为时过早。对于大家刚刚做出的判断,我们有办法来验证吗?
师:对,可以折一折。怎样折?具体说一说。可以把这些图片从中间对折,看两边是不是一样。
对折以后看两边是不是一样,我们也可以说是对折后看两边是否完全重合。大家觉得这种方法行吗?
2.动手对折,完善认知
师:那咱们就一起来折一折、比一比,最后说一说我们的发现。
折一折:把图片从中间对折
比一比:比较一下两边是否完全重合
说一说:在小组内说说你们的发现
我们先来看这三个。
师:我们通过对折和比较后不难发现,小衣服、蝴蝶和花朵的两边都能够完全重合,所以它们三个是对称的。
师:仔细观察花朵,你还发现什么?对,花朵既可以左右对折,也可以上下或斜着对折,对折后两边都能完全重合,相信你能很全面的观察。
师:再来说一说梳子,通过对折你有什么发现?
师:对,梳子无论怎样对折都不能完全重合,所以它肯定不是对称的。
最后我们来看这两图形,刚才同学们的意见不太统一,现在你们想说点什么?可以指着说一说。
师:对,音符对折后有一部分能重合,但是还有一部分没有重合,所以它不是对称的。看来对折后我们还需要认真观察,有一点不一样都不行。
师:那小船呢?对,小船对折后不能重合,所以它也不是对称的。
可是这两只小鸭子是一模一样的啊?说说你的想法。
师:对,虽然这两只小鸭子是一样的,但是对折后无法完全重合,所以它也不是对称的。
师:原来我们在判断一个图形是否对称时,除了要看两边是否一样,还要看对折后两边是否一样。我师:把它也拿走。
现在黑板上只剩下了这三个图形,它们在对折后都能够完全重合,在数学上,我们把这样的图形叫做“轴对称图形”。
3.实际操作,深化认知
师:刚才,大家一致认为这件小衣服是轴对称图形,下面我们就专门来研究研究它。你有什么办法能把它剪出来吗?
师:对,可以先对折。
那,为什么要对折?对,对折后只需要剪出衣服的一半就可以了。
师:真是一个好方法,这样剪出来的图形两边一定可以完全重合。课下请同学们用这种方法剪一剪、试一试。除了小衣服,你还可以尝试着剪一剪其他的图形,比一比谁剪得最有创意,剪得时候要注意安全!
师:老师搜集了一些同学的作品,我们一起欣赏一下。
师:这些作品都是出自同学们灵巧的双手,看着我都想动手试一试。老师这里有剪下的一些图形,但是剪下来的图形和剩下的纸边不小心弄乱了,你能猜出下面的图形分别是从哪张纸上剪下来的吗?
师:这个是,对了,这个呢?对,这个呢,对。同学们真善于思考,这些作品,虽然形状不同,大小不同,但都是通过对折之后再剪出来的,所以它们都是轴对称图形。
师:除了这些图形之外,在我们学过的平面图形中也有一些轴对称图形,你能利用今天学习的知识判断一下哪些是,哪些不是吗?一起看。
课堂练习
(难点巩固)
(一)平面几何图形辨析
师:正方形是-轴对称图形。为什么?因为正方形对折后两边能够完全重合,所以正方形是轴对称图形。你还有什么发现?对,正方形既可以上下,也可以左右或斜着对折。
师:是的,只要找到一种折法使两边能够完全重合,这个图形就是轴对称图形。
长方形是-轴对称图形。说说你的理由。因为长方形上下或左右左右对折后两边都能完全重合。
师:梯形是-轴对称图形。如果左右两条边(腰)不一样长呢?那就不是轴对称图形了。我们看问题要全面。
师:这个三角形-不是,当其中两条边相等时就是了。
师:这个平行四边形是不是轴对称图形呢?
我觉着这里又该会出现分歧了,怎么办?对,动手折一折。眼见为实,我们一起来看一下,通过验证说说你的发现?
师:这个平行四边形的两边不能完全重合,所以这个平行四边形不是轴对称图形。如果平行四边形的四条边都相等时也是轴对称图形。我们思考问题要思维严谨。
(一)想一想,画一画
师:下面我们一起做一个很有挑战性的游戏,敢接受挑战吗?
师:老师手里有一张正方形的纸,如果我将它对折再对折,然后从这里剪一刀,请你想一想,打开后会是什么图案呢?把你的想法画到练习本上。计时1分钟。
师:同学都已经画出了自己心目中的图案了吧!到底对不对呢?下面就是见证奇迹时刻,一起看!
画对的同学请把掌声送给自己吧!
师:课下同学们也可以用这种方法剪一剪、玩一玩,相信你会剪出更多、更漂亮的图案。
小结
这节课我们一起学习了对称,你会辨认轴对称图形了吗?最后,让我们再一次走进生活,感受对称带给我们的美吧!好,这节课就到这里。学科
数学
年级/册
二年级下册
教材版本
部编版小学数学教材
课题名称
第三章图形的运动(一)
教学目标
认识对称现象和轴对称图形
重难点分析
重点分析
知识点本身比较抽象:轴对称图形需要想象加实际操作相结合。
难点分析
学生空间想象能力较弱,理解困难:二年级学生的思维主要以形象思维为主,抽象逻辑思维较弱,在图形比较复杂的情况下,很难进行轴对称图形的判断。
教学方法
1.通过折一折,比一比,感受轴对称图形对折后完全重合的特点。?
2.通过观察、操作、想象初步认识对称现象和轴对称图形,能判断一个图形是否是轴对称图形。
教学环节
教学过程
导入
师:同学们喜欢做游戏吗?今天我们玩一个猜图形的游戏,根据物体的一部分,猜出这个物体是什么,好吗?
师:请看图,对,是剪刀,猜的真准,再来一个你猜出来了吗?到底是什么呢?我们一起来看,奥,是手套。
师:再来一幅,对,是螃蟹,那这个呢?你猜出来了吗?到底是什么呢?我们一起来看,奥,是飞机。
师:再来一幅,对,是灯笼,那这个呢?你猜出来了吗?到底是什么呢?我们一起来看,奥,是杯子。
师:通过刚才的猜图游戏,你发现左边的物体好猜还是右边的物体好猜?确实是左边的好猜,那为什么左边的物体好猜?
师:对,因为左边物体两边都是一样的,看到一半很容易想到另一半,右边物体两边都不一样。
师:看来还真不能怪有的同学猜的不好。像左边这些物体,两边的大小和形状都是一样的,在数学上,我们称这些物体都是对称的。今天这节课我们就一起来学习对称。
知识讲解
(难点突破)
(一)认识对称现象
师:像这样的对称现象在生活中有很多,试着说一说,你还见过哪些物体有这种对称的特征?
师:对,电视是对称的、黑板是对称的、天安门城楼也是对称的。
(二)认识轴对称图形
1.观察图形,初步认识
师:老师还带来了一些图片,它们是不是对称的呢?请同学们做出判断。
师:小衣服是-对称的。梳子-不是对称的。蝴蝶是-对称的。
师:音符呢?我想有同学认为是,有同学认为不是,我们先把它放在最下面。
师:小船是不是对称的?我想有的同学们也有不同意见,我也把它放在下面。
师:刚才同学们通过观察做出了判断,但是我们数学是一门非常严谨的学科,仅凭眼睛看就得出结论还有点为时过早。对于大家刚刚做出的判断,我们有办法来验证吗?
师:对,可以折一折。怎样折?具体说一说。可以把这些图片从中间对折,看两边是不是一样。
对折以后看两边是不是一样,我们也可以说是对折后看两边是否完全重合。大家觉得这种方法行吗?
2.动手对折,完善认知
师:那咱们就一起来折一折、比一比,最后说一说我们的发现。
折一折:把图片从中间对折
比一比:比较一下两边是否完全重合
说一说:在小组内说说你们的发现
我们先来看这三个。
师:我们通过对折和比较后不难发现,小衣服、蝴蝶和花朵的两边都能够完全重合,所以它们三个是对称的。
师:仔细观察花朵,你还发现什么?对,花朵既可以左右对折,也可以上下或斜着对折,对折后两边都能完全重合,相信你能很全面的观察。
师:再来说一说梳子,通过对折你有什么发现?
师:对,梳子无论怎样对折都不能完全重合,所以它肯定不是对称的。
最后我们来看这两图形,刚才同学们的意见不太统一,现在你们想说点什么?可以指着说一说。
师:对,音符对折后有一部分能重合,但是还有一部分没有重合,所以它不是对称的。看来对折后我们还需要认真观察,有一点不一样都不行。
师:那小船呢?对,小船对折后不能重合,所以它也不是对称的。
可是这两只小鸭子是一模一样的啊?说说你的想法。
师:对,虽然这两只小鸭子是一样的,但是对折后无法完全重合,所以它也不是对称的。
师:原来我们在判断一个图形是否对称时,除了要看两边是否一样,还要看对折后两边是否一样。我师:把它也拿走。
现在黑板上只剩下了这三个图形,它们在对折后都能够完全重合,在数学上,我们把这样的图形叫做“轴对称图形”。
3.实际操作,深化认知
师:刚才,大家一致认为这件小衣服是轴对称图形,下面我们就专门来研究研究它。你有什么办法能把它剪出来吗?
师:对,可以先对折。
那,为什么要对折?对,对折后只需要剪出衣服的一半就可以了。
师:真是一个好方法,这样剪出来的图形两边一定可以完全重合。课下请同学们用这种方法剪一剪、试一试。除了小衣服,你还可以尝试着剪一剪其他的图形,比一比谁剪得最有创意,剪得时候要注意安全!
师:老师搜集了一些同学的作品,我们一起欣赏一下。
师:这些作品都是出自同学们灵巧的双手,看着我都想动手试一试。老师这里有剪下的一些图形,但是剪下来的图形和剩下的纸边不小心弄乱了,你能猜出下面的图形分别是从哪张纸上剪下来的吗?
师:这个是,对了,这个呢?对,这个呢,对。同学们真善于思考,这些作品,虽然形状不同,大小不同,但都是通过对折之后再剪出来的,所以它们都是轴对称图形。
师:除了这些图形之外,在我们学过的平面图形中也有一些轴对称图形,你能利用今天学习的知识判断一下哪些是,哪些不是吗?一起看。
课堂练习
(难点巩固)
(一)平面几何图形辨析
师:正方形是-轴对称图形。为什么?因为正方形对折后两边能够完全重合,所以正方形是轴对称图形。你还有什么发现?对,正方形既可以上下,也可以左右或斜着对折。
师:是的,只要找到一种折法使两边能够完全重合,这个图形就是轴对称图形。
长方形是-轴对称图形。说说你的理由。因为长方形上下或左右左右对折后两边都能完全重合。
师:梯形是-轴对称图形。如果左右两条边(腰)不一样长呢?那就不是轴对称图形了。我们看问题要全面。
师:这个三角形-不是,当其中两条边相等时就是了。
师:这个平行四边形是不是轴对称图形呢?
我觉着这里又该会出现分歧了,怎么办?对,动手折一折。眼见为实,我们一起来看一下,通过验证说说你的发现?
师:这个平行四边形的两边不能完全重合,所以这个平行四边形不是轴对称图形。如果平行四边形的四条边都相等时也是轴对称图形。我们思考问题要思维严谨。
(一)想一想,画一画
师:下面我们一起做一个很有挑战性的游戏,敢接受挑战吗?
师:老师手里有一张正方形的纸,如果我将它对折再对折,然后从这里剪一刀,请你想一想,打开后会是什么图案呢?把你的想法画到练习本上。计时1分钟。
师:同学都已经画出了自己心目中的图案了吧!到底对不对呢?下面就是见证奇迹时刻,一起看!
画对的同学请把掌声送给自己吧!
师:课下同学们也可以用这种方法剪一剪、玩一玩,相信你会剪出更多、更漂亮的图案。
小结
这节课我们一起学习了对称,你会辨认轴对称图形了吗?最后,让我们再一次走进生活,感受对称带给我们的美吧!好,这节课就到这里。学科
数学
年级/册
二年级下册
教材版本
人教
课题名称
图形的运动(一)剪一剪
教学目标
利用轴对称知识剪小人,体会对折次数与得到小人的个数间的关系,解决手拉手的问题,掌握解决问题的策略
重难点分析
重点分析
利用轴对称知识剪小人,体会对折次数与得到小人的个数间的关系,解决手拉手的问题不仅要求会动手,而且要通过观察和思考发现关键点。思维过程从形象到抽象,学生容易出错。
难点分析
二年级学生的动手能力有限,剪的过程会出现各种各样的问题;学生抽象思维较弱,理解困难。
教学方法
通过辨析错例,理解剪失败的原因。
直观演示对折和画的过程。
通过讨论、探究得出对折次数和得到小人个数间的关系。
教学环节
教学过程
导入
?一、谈话交流,创设情境
同学们,我们前几节课学过哪些知识?(轴对称,平移,旋转)
这节课我们就利用轴对称的知识来解决新的问题。让我们动手来剪一剪。
知识讲解
(难点突破)
二、探索交流,解决问题?
出示例4:你能剪出像这样手拉手的四个小人吗?
先剪两个手拉手的小人试试(出示两个手拉手的小人)?
(一)、剪2个手拉手的小人
?
1、独立操作:?你知道一个小人怎样剪吗?(课前布置过剪一个小人的实践活动,课件展示操作方法)
请同学们试试剪2个手拉手的小人怎么做。
交流正例?(成功的作品)
说一说你的方法。一张纸对折一次可以剪出一个小人,对折两次后再剪就能得出两个手拉手的小人。
交流错例1(两个分开的小人)?你找到自己失败的原因了吗?
要保证小人是手拉手的必须要把手画到边(师用笔画),剪的时候也要一直剪到边。
4、交流错例2(有两个半个小人)
?
(展示两个半个人小人)同学们知道这是怎么回事吗?引导学生总结:小人的身体必须画在纸的连接处,也就是
靠近折痕的一侧。?
5、总结关键?:要成功得到两个手拉手的小人,我们先连续对折了2次,然后把半个小人的身体画在纸的连接处(靠近折痕的一侧),还要注意手画到边,剪的时候也要剪到边。?如果再给你一次机会,你能比第一次剪得更好吗?
(二)、剪4个手拉手的小人?我们能剪两个了手拉手的小人了,你还可以剪几个?剪四个行不行?
讨论、探究:
首先需要对折几次?(师生对话交流:对折1次,纸就变成了几层,打开就是2份,每份有半个小人,就得到1个小人;对折2次,2层纸就变成了几层,打开就是几份,就得到几个小人;对折3次,纸就变成几层?想不出来,那就拿出一张纸对折3次,再打开看看,纸被分成了几份?)
看来,要得到4个小人,对折3次就可以了;至于对折4次能得到几个小人,有兴趣的同学可以课下折折看??对折完了,接下来的步骤老师不再说了,大家有信心剪出4个手拉手的小人吗?那就按照步骤开始吧!看谁剪得又快又好。(生操作,师巡视指导)
?其实,折纸的方法可不止连续对折这一种哦,大家请看(课件播放折纸方法的视频),有兴趣的同学课下可以折折看。
仔细观察,对折纸的次数和剪出的小人个数之间有什么规律呢?你发现了什么?要想得到16个手拉手的小人需要将纸对折几次呢?
小组交流汇报,课件展示结论
课堂练习
(难点巩固)
三、巩固应用,内化提高?
1.能剪四个这样的小人了,大胆地说说你还能剪什么?
2.出示教材36页练习七第12题,观察思考:怎样折、画、剪?
教师提示:剪这样的图形需要的是什么样的纸张?(正方形)怎样折、怎样画才能剪出来??(学生说一说,再课件出示提示)
动手剪一剪,播放视频参照。(也可课后完成)
小结
回顾我们剪小人的过程,它用到了这一单元的哪些知识?(轴对称)
一个小人是轴对称图形,两个小人是轴对称图形,三个小人也是轴对称图形,四个小人还是轴对称图形),正是这一次次的对称我们才得到了四一样的小人。既然这四个小人都是一样的,我就可以由一个小人得到第二个,第三个,第四个,大家看这是我们学过的哪种现象?(平移)
生活中处处都有数学,只要做个有心人,你一定可以用学到的数学知识解决很多问题呢!