平面向量的基本定理及坐标表示
一、知识梳理
1.平面向量的基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
2.平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
3.平面向量的坐标运算
(1)向量加法、减法、数乘运算及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),||=.
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b?x1y2-x2y1=0.
小结:
1.若a=(x1,y1),b=(x2,y2)且a=b,则x1=x2且y1=y2.
2.若a与b不共线,λa+μb=0,则λ=μ=0.
3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.
二、例题精讲
+
随堂练习
1.判断下列结论正误(在括号内打“√”或“×”)
(1)平面内的任何两个向量都可以作为一组基底.( )
(2)同一向量在不同基底下的表示是相同的.( )
(3)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.( )
(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可以表示成=.( )
解析 (1)共线向量不可以作为基底.
(2)同一向量在不同基底下的表示不相同.
(4)若b=(0,0),则=无意义.
答案 (1)× (2)× (3)√ (4)×
2.下列各组向量中,可以作为基底的是( )
A.e1=(0,0),e2=(1,-2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,-3),e2=
解析 两个不共线的非零向量构成一组基底,故选B.
答案 B
3.设P是线段P1P2上的一点,若P1(1,3),P2(4,0)且P是线段P1P2的一个三等分点(靠近点P1),则点P的坐标为( )
A.(2,2)
B.(3,-1)
C.(2,2)或(3,-1)
D.(2,2)或(3,1)
解析 由题意得=且=(3,-3).
设P(x,y),则(x-1,y-3)=(1,-1),
∴x=2,y=2,则点P(2,2).
答案 A
4.(2015·全国Ⅰ卷)已知点A(0,1),B(3,2),向量=(-4,-3),则向量=( )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
解析 根据题意得=(3,1),∴=-=(-4,-3)-(3,1)=(-7,-4),故选A.
答案 A
5.(2017·山东卷)已知向量a=(2,6),b=(-1,λ),若a∥b,则λ=________.
解析 ∵a∥b,∴2λ+6=0,解得λ=-3.
答案 -3
6.(2019·苏州月考)已知?ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为________.
解析 设D(x,y),则由=,得(4,1)=(5-x,6-y),即解得
答案 (1,5)
考点一 平面向量基本定理及其应用
【例1】
(1)(2019·衡水中学调研)一直线l与平行四边形ABCD中的两边AB,AD分别交于点E,F,且交其对角线AC于点M,若=2,=3,=λ-μ(λ,μ∈R),则μ-λ=( )
A.-
B.1
C.
D.-3
解析 (1)=λ-μ=λ-μ(+)
=(λ-μ)-μ=2(λ-μ)-3μ.
因为E,M,F三点共线,所以2(λ-μ)+(-3μ)=1,
即2λ-5μ=1,∴μ-λ=-.
(2)(2019·北京海淀区调研)在△ABC中,D为三角形所在平面内一点,且=+.延长AD交BC于E,若=λ+μ,则λ-μ的值是________.
解析:(2)设=x,∵=+,
∴=+.
由于E,B,C三点共线,∴+=1,x=.
根据平面向量基本定理,得λ=,μ=.
因此λ-μ=-=-=-.
答案 (1)A (2)-
【训练1】
(1)(2019·济南质检)在△ABC中,=,若P是直线BN上的一点,且满足=m+,则实数m的值为( )
A.-4
B.-1
C.1
D.4
解析 (1)根据题意设=n(n∈R),则=+=+n=+n(-)=+n=(1-n)+.
又=m+,∴解得
(2)在平面直角坐标系中,O为坐标原点,A,B,C三点满足=+,则=________.
解析:(2)因为=+,所以-=-+=(-),
所以=,所以=.
考点二 平面向量的坐标运算
【例2】
(1)设A(0,1),B(1,3),C(-1,5),D(0,-1),则+等于( )
A.-2
B.2
C.-3
D.3
(2)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则=( )
A.1
B.2
C.3
D.4
解析 (1)由题意得=(1,2),=(-1,4),=(0,-2),所以+=(0,6)=-3(0,-2)=-3.
(2)以向量a和b的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),
则A(1,-1),B(6,2),C(5,-1),
∴a==(-1,1),b==(6,2),c==(-1,-3),
∵c=λa+μb,∴(-1,-3)=λ(-1,1)+μ(6,2),
则解得λ=-2,μ=-,∴==4.
答案 (1)C (2)D
【训练2】
(1)已知O为坐标原点,点C是线段AB上一点,且A(1,1),C(2,3),||=2||,则向量的坐标是________.
解析 (1)由点C是线段AB上一点,||=2||,得=-2.
设点B为(x,y),则(2-x,3-y)=-2(1,2).
则解得
所以向量的坐标是(4,7).
(2)(2019·天津和平区一模)如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若=λ+μ(λ,μ∈R),则λ+μ的值为( )
A.
B.
C.2
D.
解析:(2)建立如图所示的平面直角坐标系,则D(0,0).
不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),
∴=(-2,2),=(-2,1),=(1,2),
∵=λ+μ,∴(-2,2)=λ(-2,1)+μ(1,2),
∴解得则λ+μ=.
答案 (1)(4,7) (2)B
考点三 平面向量共线的坐标表示
角度1 利用向量共线求向量或点的坐标
【例3-1】
已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.
解析 法一 由O,P,B三点共线,可设=λ=(4λ,4λ),则=-=(4λ-4,4λ).
又=-=(-2,6),
由与共线,得(4λ-4)×6-4λ×(-2)=0,
解得λ=,所以==(3,3),
所以点P的坐标为(3,3).
法二 设点P(x,y),则=(x,y),因为=(4,4),且与共线,所以=,即x=y.
又=(x-4,y),=(-2,6),且与共线,
所以(x-4)×6-y×(-2)=0,解得x=y=3,所以点P的坐标为(3,3).
答案 (3,3)
角度2 利用向量共线求参数
【例3-2】
(1)(2018·全国Ⅲ卷)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________.
(2)已知向量a=(2,3),b=(-1,2),若ma+nb与a-3b共线,则=________.
解析 (1)由题意得2a+b=(4,2),因为c=(1,λ),且c∥(2a+b),所以4λ-2=0,即λ=.
(2)由≠,所以a与b不共线,
又a-3b=(2,3)-3(-1,2)=(5,-3)≠0.
那么当ma+nb与a-3b共线时,
有=,即得=-.
答案 (1) (2)-
【训练3】
(1)(2019·北师大附中检测)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若∥a,则点B的坐标为________.
(2)设向量=(1,-2),=(2m,-1),=(-2n,0),m,n∈R,O为坐标原点,若A,B,C三点共线,则m+n的最大值为( )
A.-3
B.-2
C.2
D.3
解析 (1)由题意设B(x,2x),则=(x-3,2x),
∵∥a,∴x-3-2x=0,解得x=-3,∴B(-3,-6).
(2)由题意易知,∥,其中=-=(2m-1,1),=-=(-2n-1,2),
所以(2m-1)×2=1×(-2n-1),得:2m+1+2n=1.
2m+1+2n≥2,所以2m+n+1≤2-2,即m+n≤-3.
答案 (1)(-3,-6) (2)A
三、课后练习
1.如图,在△ABC中,=,=,若=λ+μ,则λ+μ的值为( )
A.
B.
C.
D.
解析 =+=+=+(-)=+×=+.
因为=λ+μ,所以λ=,μ=,则λ+μ=+=.
答案 A
2.给定两个长度为1的平面向量和,它们的夹角为90°,如图所示,点C在以O为圆心的圆弧上运动,若=x+y,其中x,y∈R,则x+y的最大值是( )
A.1
B.
C.
D.2
解析 因为点C在以O为圆心的圆弧上,
所以||2=|x+y|2=x2+y2+2xy·=x2+y2,
∴x2+y2=1,则2xy≤x2+y2=1.
又(x+y)2=x2+y2+2xy≤2,
故x+y的最大值为.
答案 B
3.已知||=1,||=,·=0,点C在∠AOB内,且与的夹角为30°,设=m+n(m,n∈R),则的值为________.
解析 ∵·=0,∴⊥,
以OA为x轴,OB为y轴建立直角坐标系,
=(1,0),=(0,),=m+n=(m,n).
∵tan
30°==,
∴m=3n,即=3.
答案 3
4.在△ABC中,点D满足=,当点E在线段AD上移动时,若=λ+μ,则t=(λ-1)2+μ2的最小值是________.
解析 因为=,所以=+.
又=λ+μ,点E在线段AD上移动,
所以∥,则=,即λ=μ.
所以t=(λ-1)2+λ2=2λ2-2λ+1=2+.
当λ=时,t的最小值是.
答案
5.直角△ABC中,AB=AC=2,D为AB边上的点,且=2,则·=________;若=x+y,则xy=________.
解析 以A为原点,分别以,的方向为x轴、y轴的正方向建立平面直角坐标系,则A(0,0),B(2,0),C(0,2),D,则=,=(0,-2),=(2,-2),则·=·(0,-2)=×0+(-2)×(-2)=4.由=x+y=x(0,-2)+y(2,-2)=(2y,-2x-2y)=得解得则xy=.
答案 4