数学试题
一、选择题(本大题共8小题,每小题3分,共24分.)
1.下列关于x的方程是一元二次方程的是(
)
A.
B.
C.
D.
2.点在反比例函数的图象上,则下列各点在此函数图象上的是(
)
A.
B.
C.
D.
3.如图,直线,若,,,则
A.
4
B.
6
C.
7
D.
9
第3题图
第4题图
4.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是( )
A.∠B=∠C
B.∠ADC=∠AEB
C.BE=CD,AB=AC
D.AD:AC=AE:AB
5.已知在中,,,则的正切值为
A.
B.
C.
D.
6.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙的平均数都是7,甲的方差是,乙的方差是,下列说法正确的是(
)
A.
乙的成绩比较稳定
B.
甲的成绩比较稳定
C.
乙射中的总环数比甲多
D.
甲射中的总环数比乙多
7.抛物线先向左平移4个单位长度再向下平移3个单位长度,得到的抛物线是(
)
A.
B.
C.
D.
8.已知点都在反比例函数的图象上,则的大小关系是(
)
A.
B.
C.
D.
二、填空题:(本大题共6小题,每小题3分,共18分.把答案填在答题卡中对应题号里)
9.已知,则的值为
10.方程的解是______.
11.如图,某公园入口有三级台阶,每级台阶高18cm,深30cm,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度,则AC的长度是
第11题图
第13题图
12.若关于x的一元二次方程无实数根,则实数k的取值范围是______.
13.如图,在反比例函数图象上,轴于H,则的值为____.
14.已知如图,在矩形ABCD中,,,P是边AB上一点,若与相似,AP为____
_
三、解答题(本大题共9个小题,满分58分.请考生用黑色碳素笔在答题卡相应的题号后的答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效)
15.(3分)计算:;
16.(6分)解方程:
;
.
17.
(5分)如图,在中,,,,,求BC的长.
18.(6分)已知反比例函数的图象经过点.
求这个函数的表达式;
判断点,是否在这个函数的图象上?
19.(6分)某农场要建一个面积为130平方米的矩形养鸡场,鸡场的一边靠墙墙长16米,另三边用长为32米的木板围成,并在与墙平行的一边开一道1米宽的门门用其它材料制成,求矩形养鸡场的边长.
(6分)小明家所在居民楼的对面有一座大厦,高为米,为测量居民楼与大厦之间的距离,小明从自己家的窗户处测得大厦顶部的仰角为,大厦底部的俯角为.
(1)求的度数;
(2)求小明家所在居民楼与大厦之间的距离.
(参考数据:,,,,,)
21.(7分)如图,一块材料的形状是锐角三角形,边,高,把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在,上,这个正方形零件的边长是多少?
22.(8分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题.
______,______.
请补全条形统计图;
在扇形统计图中,“软件”所对应的扇形的圆心角是______度;
若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有______名.
23.(10分)如图,已知二次函数的图像经过点A(-1,0)和点D(5,0).
(1)求该二次函数的解析式;
(2)直接写出该抛物线的对称轴及顶点C的坐标;
(3)点B是该抛物线与y轴的交点,求四边形ABCD的面积.
数学试题参考答案
一、选择题(每小题3分)
1.【答案】D
2.【答案】A
3.【答案】A
4.【答案】C
5.【答案】D
6.
【答案】B
7.【答案】A
8.【答案】D.
二、填空题(每小题3分)
9.【答案】
10.【答案】
11.【答案】
210cm
12.【答案】
13.【答案】
14.【答案】4或10或16
三、解答题(本大题共8个小题,共58分)
15.(3分);
16.(6分)【答案】(1),;
(2),.
17.
(5分)
【答案】
18.(6分)(1);
(2)点在反比例函数的图象上,C点不在反比例函数的图象上;
19.(6分)【答案】矩形养鸡场的长是13米,宽是10米.
20.(6分)解:(1);
(2)米.
21.(7分)【答案】
.
22.(8分)【解析】(1)50,10;
硬件专业的毕业生有:人,补全的条形统计图略;
72;
(4)180.
23.(10分)
【答案】(1);(2)对称轴为直线x=2,顶点C的坐标为(2,-9);
(3)30