数学广角 —重复问题
教学内容
人教版《义务教育课程标准实验教科书数学》三年级下册P108例 1及相关练习。
教材分析
“数学广角”(第一课时)是义务教育课程实验教科书人教版数学三年级下册第9单元的一个内容,这节课的教学内容是利用集合的思想解决简单的问题,介绍集合思想,使学生能运用这个数学方法解决一些简单的实际问题或数学问题,使学生体会到数学思想的重要性和掌握数学思想的必要性。在此之前,学生学习过分类思想方法,它是集合思想的基础,而集合思想又是数学中最基本的思想,并且从一开始学习数学时,就一直在渗透、运用着集合思想,因此,本节的学习显得尤为重要。
教学目标:
知识与能力
通过本课的学习,学生要能掌握集合的思想方法,利用集合的思想方法解决简单的实际问题。能力上要求通过学习,能用自己的方法来解决一些生活中的实际问题。
过程与方法
1、通过给学生提供的一组同学喜欢唱歌和画画的情况统计表,使学生观察后引起冲突,引出集合的思想方法。
2、学生通过讨论和教师的指导画出集合图。
3、通过提问,让学生说说画出的图的不同位置所表示的不同意义。
4、通过小组讨论,寻求用集合解决问题的方法,巩固集合的思想。
教学重点:经历集合产生的过程,并学会用集合来解决实际问题。
教学难点:对集合图的理解。
课前准备:课件
教学设想:
集合问题具有高度的抽象性,如何沟通学生的生活世界,让抽象的问题生活化,在生活化的问题解决中不断感悟集合图的产生过程呢?本次设计,我是从矛盾中展开,经历“矛盾——演示——画图——修正图——用算式表示”这个演示和画图结合的过程。在这个过程,学生思维的难度提高了,但思考的空间增大了,学生能真正自主探索。
1、知识在矛盾中展开
当学生原有的知识不能解决新的问题时,学生就会希望学习一种新的知识。此时,他们学习的兴趣是积极的。就如这节课始,老师向学生提供了本班一个小组的喜爱唱歌和画画人数名单的统计表,计算小组共有多少人。学生只是初步觉得是多少人,当知道不是这样的,他们的求知欲是极其强烈的。
2、集合图在比较中完善
学生因为是第一次接触集合,所以当他们用图表示时,是五花八门:有的用圆表示,有的用长方形,并用文字说明是重复算了;有的学生用箭头表示,有的在表格里圈起来;这里让学生评价,教师适当引导让学生感受到集合图的优点。最后通过小组学生实地演示验证,让学生形象感受这重叠部分是算了两次。在这样的自主比较中,集合图的产生是具体、形象的。学生也能清楚地表达集合图各部分的意义。
3、集合图在画中再次提升
刚才提供的数据较小,学生也容易理解。第二个环节,我结合课中调查出示信息全班喜欢唱歌和画画的人数,让学生画一画,继续升华当数比较大时,集合图所表示的意思。学生在演示或摆的过程中进一步认识了每个部分的关系,他们也能画出图。随后我让学生说说各部分表示什么?学生的图肯定是不完善的,可以结合演示的过程让学生回忆,在回忆中说说刚才每个圈里表示的是什么,交叉的部分表示的是什么,应该怎样写。学生在画、说、想的过程中,提升了对集合图的认识。
4、在写中形成抽象
集合的抽象性是在它最终形成结论才具有的,在结论的形成过程中,除了大量的感性材料,还需要算式的支撑。看了,画了,让学生用算式表示喜欢唱歌和喜欢画画的一共有多少人?就能帮助学生建立一种算法,提高学生解决问题的能力。学生的算法也是多样的,解题策略的多样性在学生的世界里展示出来了。他们也能用自己的理解方式解释每个算式的意义。
5、在想象中尽情表达
让不同的学生学习不同的数学,让不同的学生有不同的发展,这是新课改下很流行的话语。作为一节新授课的尾声部分——实践运用,应该促进学生发展。“想象一下:4+9-2这个算式可能是怎样的一幅图,请把它画下来或用文字表达出来”。这个练习打通了算式和图之间的关系,学生又一次用学到的知识解决实际的问题。学生能灵活应用,想象力很丰富。
整个教学过程,是在开放的信息处理中认知进行,是思维的碰撞,是智慧展现过程。
教学流程设计
一、创设情境,课前交流
猜两个脑筋急转弯题:
①2个妈妈2个女儿,可只有3个人,为什么?【师板书:外婆、妈妈、女儿】
②小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:引导学生,你能上来用你喜欢的方法解释一下吗?(让学生用画图来表示解释)【生板书画画:○○●○○O】
二、引入新课,激发探究欲望
1、 呈现材料
老师:课前老师了解到我们3(2)班的小朋友有很多的兴趣爱好,有的喜欢运动,有的喜欢看书……也有的喜欢不只一样。课前我对我们班第2组同学做了一个现场调查,了解大家对唱歌画画的喜欢情况。想不想来看看调查结果。
师课件出示表格:
三(2)班第二组喜欢唱歌和画画的同学名单统计表
喜欢唱歌
喜欢画画
(以上名单一定要真实,同时必须上下有2个名字重叠。)
2、 收集数据
师:看到表格,我们可以了解到哪些数学信息?
生1:喜欢唱歌的有5人。【板书:5人】
生2:喜欢画画的有4人。【板书:4人】
师:那你能很快说出这组一共有多少人?
(结果学生出现分歧:有的说是9人、有的认为是7人,实际上是7人。)
师提问:为什么会和实际不符呢?
讨论交流,找出原因:有2人是重叠的。
师请学生找找重叠的是谁。
三、进入新课,积极探究体验
(一)重新排列,初步体验
师:看来这份重叠的统计表不方便我们数人数,那怎样表示更好呢?怎样才能让别人一看就知道哪些喜欢唱歌,哪些喜欢画画,哪些同学两种都喜欢,同时还要方便我们数人数。
先让学生说说怎样整理,再让第二小组学生上台表演,下面的学生当指挥,让学生直接在演示和争辩中逐步产生集合的粗胚。
你们能不能想办法设计一幅图表示出来,看谁的设计又清楚又简洁又有创意。(生画,师巡视)
(二)、引出集合图,加深理解
1、 学生介绍自己的作品,学生评价。(可能有表格式的、三部分的、符号的、图画的?)?
2、 对比作品,优化方法,并说理由。
? 3、 课件演示,突出集合图。
师:同学们真棒,和数学家想到一块了,很多年前英国的一个逻辑学家韦恩就把你们这种想法第一个用这样的图表示出来了(课件出示),后人就把这种图叫韦恩图,如果你们比他早出生,那就叫XX图了。
??4、 理解韦恩图各部分的含义。
?? 图中红圈里表示什么?蓝圈里的表示什么?中间交叉部分表示什么?(让学生结合图形一一对应来讲清楚讲透。)
?? 对比表格与图,你觉的哪种好,为什么?
(三)数形结合,列式计算
1、 看着这幅图你能列式算出一共有多少人吗?把算式写在你的设计下边,写完后和同桌交流一下。
2、 指几生板演。
3、 学生汇报说想法。
(四)适当延伸,加深认识
?如果现在请你们来参加唱歌和画画活动,你想选择哪一项呢?(学生举手表决,很快的统计人数并板书出来)我们班共有多少人?
(五)、归纳揭题
师:同学们,这种有重叠现象的数学问题就是我们数学广角中的一个内容【师板书:数学广角-重叠问题】我们可以通过画一画这样的重叠圈,帮助理解,解决问题。
四、实践运用,发展提高
1、重叠问题很多,我们先做一下课本例1的这道题:课件展示。我们再打开课本110页,做一下练习二十四的第一题、第二题。(课件展示)
2、挑战题:想象一下4+9-2,可能会是一个怎样的问题,你能把它画出来或用文字表达出来吗?(时间不够可以作为课后作业) 课件展示
五、总结;找找生活中的重叠问题。
六、板书设计:
数学广角 —重叠问题
??喜欢唱歌5人 喜欢画画4人
?? 两种都喜欢的2人
?? 一共有多少人?
?? 5+4-2=7人
??