四年级数学下册第五单元
第五课时 《分数与除法》
教材分析
《分数与除法》是冀教版四年级数学下册第五单元第五课时内容。本节课,是在分数意义基础上,使学生初步知道两个整数相除,只要除数不为0,都可以用分数来表示商。这样可以加深和扩展学生对分数意义理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。本节课比较抽象,学生容易理解用除法计算,但是理解计算结果比较困难一些。
二、教学目标:
(一)结合具体事例,经历动手分月饼、用算式表示分的结果等认识分数与除法关系的过程。
(二)理解并掌握分数与除法的关系,会用分数表示两个数相除的结果。
(三)积极参与数学活动,获得成功的体验,体会数学知识间的联系。
三、教学重难点:
(一)理解归纳分数与除法的关系。
(二)用除法的意义理解分数的意义。
四、教具准备:圆形纸片
五、教学过程:
(一)复习引入
师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)
课件出示练习题。
引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)
(二)探究新知
1.课件出示习题:
把10个苹果平均分给2(或5、7)个人,每个人分得多少个?(列式计算)
师:这道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成几份,求每份是多少。下面我们再来看一下这道题。
2.出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?
师:这道题该怎样列式呢?(学生列式,师板书:1÷3)
师:1÷3表示什么意思?
生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。
师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?
生:false个。
师:大家都认为是这样吗?(是)谁来说说你是怎么想的?
教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的false。
师:请大家看,每份都是false,每个人得到的是多少个蛋糕呢?
生:false个。
师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。
教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而false 我们通过演示知道了每人得到false个。所以1÷3的结果就是false。
(板书“1÷3=false”)(学生齐读算式)
师:一个蛋糕平均分给3个人,我们知道了每人分得false个,现在要分一些其它的物品,你会吗?
3.(课件出示例2并解答)
4.(课件出示例3)指名读题
师:谁能列出算式?
生:3÷4(师板书)
师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。
小组操作,教师巡视指导。
师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?
小组边汇报,边演示。
小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是false块。
师:你能用一个式子表示一下吗?
小组1:1÷4=false块。
师:好。请接着汇报吧。
小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个false块,也就是false块。
师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。教师边叙述方法,边进行课件演示。
师:还有没有和这组方法不同的?
小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了false块。
师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的false,拼在一起就是false块。
师:通过大家操作我们知道了每人得到了false块月饼(板书:false块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了false块,也就是说3÷4的结果就是false。
5.师:请大家看一看,今天这几道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?
学生分小组讨论
生:我们发现,被除数就是分子,除数就是分母。
师:你能试着表示出来吗?
生:被除数÷除数=false(师板书)
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=false(师板书)
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(学生齐读分数与除法的关系)
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?
学生观察算式,思考。
生:可以。比如false=3÷4。
课件出示,齐读:两个整数相除,商可以用分数来表示,被除数作分子,除数作分母.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。
请学生观察黑板算式,和同学讨论。
学生汇报,教师总结。
25082503197860
(三)全课总结
1.把一个数平均分成几份,求每一份是多少,用除法。
247650323852.被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。
2.被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。
18891253197860
3451225424815
被除数÷除数=false (除数≠0)
a÷b= false (b≠0)
布置作业:
教材练一练第1、3、5题。
七、板书设计:
87630041910
1. 把一个数平均分成几份,求每一份是多少,用除法。
2.被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。
被除数÷除数=false (除数≠0)
a÷b= false (b≠0)
教学反思
《分数与除法》是在学生学习了分数的意义基础上进行教学的,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。
一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学“把3个月饼平均分给4个同学,每个同学应分多少?”时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很清楚。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3个月饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务,让每个人都有事可做,小组合作的效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间,在学生汇报展示的时候,给予指导,使学生真正理解分数的意义。