2021年中考数学二轮专题复习 最值问题(6份 Word版 含解析)

文档属性

名称 2021年中考数学二轮专题复习 最值问题(6份 Word版 含解析)
格式 zip
文件大小 5.2MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2021-02-04 23:15:09

文档简介

专题65
胡不归中的双线段模型与最值问题
【专题说明】
胡不归模型问题解题步骤如下;
1、将所求线段和改写为“PA+PB”的形式(<1),若>1,提取系数,转化为小于1的形式解决。
2、在PB的一侧,PA的异侧,构造一个角度α,使得sinα=
3、最后利用两点之间线段最短及垂线段最短解题
【模型展示】
如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1,记,
即求BC+kAC的最小值.
构造射线AD使得sin∠DAN=k,CH/AC=k,CH=kAC.
将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.在求形如“PA+kPB”式子最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.
【例题】
1、在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为5.
(1)求抛物线和一次函数的解析式;
(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;
(3)若点为轴上任意一点,在(2)的结论下,求的最小值.
【解析】
(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,
∵,∴点的坐标为,
代入抛物线的解析式得,,∴,
∴抛物线的解析式为,即.
令,解得,,∴,
∴,
∵的面积为5,∴,∴,
代入抛物线解析式得,,解得,,∴,
设直线的解析式为,
∴,解得:,
∴直线的解析式为.
(2)过点作轴交于,如图,设,则,
∴,
∴,
∴当时,的面积有最大值,最大值是,此时点坐标为.
(3)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,
∵,,∴,,∴,
∵,∴,∴,
∵、关于轴对称,∴,
∴,此时最小,
∵,,∴,
∴.∴的最小值是3.
2、如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是(
)
【解析】
如图,作DH⊥AB于H,CM⊥AB于M.
∵BE⊥AC,∴∠AEB=90°,
∵tanA==2,设AE=a,BE=2a,
则有:100=a2+4a2,∴a2=20,∴a=2或-2(舍弃),∴BE=2a=4,
∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))
∵∠DBH=∠ABE,∠BHD=∠BEA,∴,
∴DH=BD,
∴CD+BD=CD+DH,
∴CD+DH≥CM,
∴CD+BD≥4,
∴CD+BD的最小值为4.
故选B.
3、已知抛物线过点,两点,与y轴交于点C,.
(1)求抛物线的解析式及顶点D的坐标;
(2)过点A作,垂足为M,求证:四边形ADBM为正方形;
(3)点P为抛物线在直线BC下方图形上的一动点,当面积最大时,求点P的坐标;
(4)若点Q为线段OC上的一动点,问:是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.
【解析】
(1)函数的表达式为:,即:,解得:,
故抛物线的表达式为:,则顶点;
(2),,
∵A(1,0),B(3,0),∴
OB=3,OA=1,∴AB=2,
∴,
又∵D(2,-1),∴AD=BD=,
∴AM=MB=AD=BD,∴四边形ADBM为菱形,
又∵,菱形ADBM为正方形;
(3)设直线BC的解析式为y=mx+n,
将点B、C的坐标代入得:,解得:,
所以直线BC的表达式为:y=-x+3,
过点P作y轴的平行线交BC于点N,
设点,则点N,
则,
,故有最大值,此时,故点;
(4)存在,理由:
如图,过点C作与y轴夹角为的直线CF交x轴于点F,过点A作,垂足为H,交y轴于点Q,此时,
则最小值,
在Rt△COF中,∠COF=90°,∠FOC=30°,OC=3,tan∠FCO=,
∴OF=,∴F(-,0),
利用待定系数法可求得直线HC的表达式为:…①,
∵∠COF=90°,∠FOC=30°,∴∠CFO=90°-30°=60°,
∵∠AHF=90°,∴∠FAH=90°-60°=30°,
∴OQ=AO?tan∠FAQ=,∴Q(0,),
利用待定系数法可求得直线AH的表达式为:…②,
联立①②并解得:,故点,而点,
则,即的最小值为.
4、已知抛物线(为常数,)经过点,点是轴正半轴上的动点.
(Ⅰ)当时,求抛物线的顶点坐标;
(Ⅱ)点在抛物线上,当,时,求的值;
(Ⅲ)点在抛物线上,当的最小值为时,求的值.
【解析】
(Ⅰ)∵抛物线经过点,∴.即.
当时,,
∴抛物线的顶点坐标为.
(Ⅱ)由(Ⅰ)知,抛物线的解析式为.
∵点在抛物线上,
∴.
由,得,,
∴点在第四象限,且在抛物线对称轴的右侧.
如图,过点作轴,垂足为,则点.
∴,.得.
∴在中,.∴.
由已知,,∴.∴.
(Ⅲ)∵点在抛物线上,
∴.
可知点在第四象限,且在直线的右侧.
考虑到,可取点,
如图,过点作直线的垂线,垂足为,与轴相交于点,
有,得,
则此时点满足题意.
过点作轴于点,则点.
在中,可知.
∴,.
∵点,
∴.解得.
∵,
∴.
∴.
5、如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.
(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;
(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度(0°<<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
【解析】(1)如图1
∵抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C
∴令y=0解得:x1=﹣1,x2=3,令x=0,解得:y=﹣3,
∴A(﹣1,0),B(3,0),C(0,﹣3)
∵点D为抛物线的顶点,且﹣4
∴点D的坐标为D(1,﹣4),∴直线BD的解析式为:y=2x﹣6,
由题意,可设点N(m,m2﹣2m﹣3),则点F(m,2m﹣6)
∴|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3
∴当m==2时,NF
取到最大值,此时MN取到最大值,此时HF=2,
此时,N(2,﹣3),F(2,﹣2),H(2,0)
在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,
∴sin∠OCK=
,直线KC的解析式为:,且点F(2,﹣2),
∴PJ=PC,直线FJ的解析式为:,∴点J(
,

∴FP+PC的最小值即为FJ的长,且,∴;
(2)由(1)知,点P(0,
),
∵把点P向上平移
个单位得到点Q,∴点Q(0,﹣2)
∴在Rt△AOQ中,∠AOG=90°,AQ=,取AQ的中点G,连接OG,则OG=GQ=AQ=,此时,∠AQO=∠GOQ
把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G
①如图2
G点落在y轴的负半轴,则G(0,﹣),过点Q'作Q'I⊥x轴交x轴于点I,且∠GOQ'=∠Q'
则∠IOQ'=∠OA'Q'=∠OAQ,
∵sin∠OAQ===,∴,解得:|IO|=
∴在Rt△OIQ'中根据勾股定理可得|OI|=,∴点Q'的坐标为Q'(,﹣);
②如图3,
当G点落在x轴的正半轴上时,同理可得Q'(,)
③如图4
当G点落在y轴的正半轴上时,同理可得Q'(﹣,)
④如图5
当G点落在x轴的负半轴上时,同理可得Q'(﹣,﹣)
综上所述,满足条件的点Q′坐标为:(,﹣),(,),(﹣,),(,﹣)
【2019长沙中考】如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是_______.
【分析】本题关键在于处理“”,考虑tanA=2,△ABE三边之比为,,故作DH⊥AB交AB于H点,则.
问题转化为CD+DH最小值,故C、D、H共线时值最小,此时.
【小结】本题简单在于题目已经将BA线作出来,只需分析角度的三角函数值,作出垂线DH,即可解决问题,若稍作改变,将图形改造如下:
则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.
【2019南通中考】如图,平行四边形ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则的最小值等于________.
【分析】考虑如何构造“”,已知∠A=60°,且sin60°=,故延长AD,作PH⊥AD延长线于H点,即可得,将问题转化为:求PB+PH最小值.
当B、P、H三点共线时,可得PB+PH取到最小值,即BH的长,解直角△ABH即可得BH长.
【2014成都中考】如图,已知抛物线(k为常数,且k>0)与轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D.
(1)若点D的横坐标为-5,求抛物线的函数表达式;
(2)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
【分析】第一小问代点坐标,求解析式即可,此处我们直接写答案:A(-2,0),B(4,0),直线解析式为,D点坐标为,故抛物线解析式为,化简为:.另外为了突出问题,此处略去了该题的第二小问.
点M运动的时间为,即求的最小值.
接下来问题便是如何构造,考虑BD与x轴夹角为30°,且DF方向不变,故过点D作DM∥x轴,过点F作FH⊥DM交DM于H点,则任意位置均有FH=.
当A、F、H共线时取到最小值,根据A、D两点坐标可得结果.
【2018重庆中考】抛物线与x轴交于点A,B(点A在点B的左边),与y轴交于点C.点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标.(为突出问题,删去了两个小问)
【分析】根据抛物线解析式得A、B、C,直线AC的解析式为:,可知AC与x轴夹角为30°. 
根据题意考虑,P在何处时,PE+取到最大值.过点E作EH⊥y轴交y轴于H点,则∠CEH=30°,故CH=,问题转化为PE+CH何时取到最小值.
考虑到PE于CH并无公共端点,故用代数法计算,设,则,,,,
当P点坐标为时,取到最小值,故确定P、C、求四边形面积最小值,运用将军饮马模型解题即可.专题67
(1)费马点中三线段模型与最值问题
【专题说明】
费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:
(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.
费马点问题解题的核心技巧:
旋转60°
构造等边三角形
将“不等三爪图”中三条线段转化至同一直线上
利用两点之间线段最短求解问题
【模型展示】
问题:在△ABC内找一点P,使得PA+PB+PC最小.
【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.
(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.
(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.
(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)
(4)以BC为边作等边△BCF,连接AF,必过点P,有∠PAB=∠BPC=∠CPA=120°.
在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.
有这两个结论便足以说明∠PAB=∠BPC=∠CPA=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!
【例题】
1、如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长(  )
A.
B.
C.
D.
【解析】如图,
∵将△ABG绕点B逆时针旋转60°得到△EBF,
∴BE=AB=BC,BF=BG,EF=AG,
∴△BFG是等边三角形.∴BF=BG=FG,.
∴AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,
∴当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,
过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=180°-120°=60°,
∵BC=4,∴BF=2,EF=2,在Rt△EFC中,
∵EF2+FC2=EC2,∴EC=4.
∵∠CBE=120°,∴∠BEF=30°,
∵∠EBF=∠ABG=30°,∴EF=BF=FG,
∴EF=CE=,
故选:D.
2、如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
【解析】如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,
显然△MOP为等边三角形,∴OM+OG=OP+PQ,
∴点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,
∴当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,
此时,∠NMQ=75°+60°=135°,
过Q作QA⊥NM交NM的延长线于A,则∠MAQ=90°,
∴∠AMQ=180°-∠NMQ=45°,
∵MQ=MG=4,
∴AQ=AM=MQ?cos45°=4,
∴NQ=,
故答案为:
3、如图,四边形
是菱形,B=6,且∠ABC=60°
,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM
的最小值为________.
【解析】
将△BMN绕点B顺时针旋转60度得到△BNE,
∵BM=BN,∠MBN=∠CBE=60°,
∴MN=BM
∵MC=NE
∴AM+MB+CM=AM+MN+NE.
当A、M、N、E四点共线时取最小值AE.
∵AB=BC=BE=6,∠ABH=∠EBH=60°,
∴BH⊥AE,AH=EH,∠BAH=30°,
∴BH=AB=3,AH=BH=,
∴AE=2AH=.
故答案为.
4、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=_____.
【解析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.
∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,
∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,
∵MG=PB,AG=AP,∠GAP=60°,
∴△GAP是等边三角形,
∴PA=PG,
∴PA+PB+PC=CP+PG+GM,
∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,
∵AP+BP+CP的最小值为2,∴CM=2,
∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,
作BN⊥AC于N.则BN=AB=1,AN=,CN=2-,
∴BC=.
故答案为.
5、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.

求证:△AMB≌△ENB;

①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;

当AM+BM+CM的最小值为时,求正方形的边长.
【解析】⑴∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.
∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.,即∠BMA=∠NBE.
又∵MB=NB,∴△AMB≌△ENB(SAS)
⑵①当M点落在BD的中点时,AM+CM的值最小
②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小
理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.
∵∠MBN=60°,MB=NB,∴△BMN是等边三角形,∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=x,EF=.
在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=.
解得,x=(舍去负值).
∴正方形的边长为
6、在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;
(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;
①把图形补充完整(无需写画法);
②求的取值范围;
(2)如图2,求BE+AE+DE的最小值.
【解析】(1)①如图△DCF即为所求;
②∵四边形ABCD是正方形,∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,
∴AC==AB=4,
∵△ADE绕点D逆时针旋转90°得到△DCF,∴∠DCF=∠DAE=45°,AE=CF,
∴∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4?x,
∴y=(4?x)2+x2=2x2?8x+160(0<x≤4).即y=2(x?2)2+8,
∵2>0,∴x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∴8≤EF2≤16.
(2)如图中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.
由旋转的性质可知,△AEG是等边三角形,∴AE=EG,
∵DF≤FG+EG+DE,BE=FG,∴AE+BE+DE的最小值为线段DF的长.
在Rt△AFH中,∠FAH=30°,AB==AF,∴FH=AF=,AH==,
Rt△DFH中,DF==,∴BE+AE+ED最小值为
专题
(2)费马点中的对称模型与最值问题
【专题说明】
利用轴对称的性质,把三线段问题通过做对称转化为两点之间线段最短的问题进而解题。
【例题】
1、如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.
【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为PA+PB+PC的最小值.至于点P的位置?这不重要!
如何求BD?考虑到△ABC和△ACD都是特殊的三角形,过点D作DH⊥BA交BA的延长线于H点,根据勾股定理,即可得出结果.
2、如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.
【分析】依然构造60°旋转,将三条折线段转化为一条直线段.
分别以AD、AM为边构造等边△ADF、等边△AMG,连接FG,
易证△AMD≌△AGF,∴MD=GF
∴ME+MA+MD=ME+EG+GF
过F作FH⊥BC交BC于H点,线段FH的长即为所求的最小值.
3、如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.
【解析】
如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵点P关于OA的对称点为C,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=3.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.
4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为(

A.
B.
C.
D.
【解析】分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,
则点A的坐标为(1,3)、B点坐标为(3,1),
作A点关于y轴的对称点P,B点关于x轴的对称点Q,
所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),
连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,
四边形ABCD周长=DA+DC+CB+AB
=DP+DC+CQ+AB
=PQ+AB
=
=4+2
=6,
故选B.
5、如图所示,,点为内一点,,点分别在上,求周长的最小值.
【解析】如图,作P关于OA、OB的对称点,连结、,交OA、OB于M、N,此时周长最小,根据轴对称性质可知,,,且,,,,为等边三角形,即周长的最小值为8.
6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【解析】(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).
设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,
解得:k=,b=.∴直线AE的解析式为y=x+.
(2)设直线CE的解析式为y=mx﹣,
将点E的坐标代入得:4m﹣=,解得:m=.
∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.
设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),
则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.
∴△EPC的面积=×(x2+x)×4=﹣x2+x.
∴当x=2时,△EPC的面积最大.
∴P(2,﹣).
如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.
∵K是CB的中点,
∴k(,﹣).
∵点H与点K关于CP对称,
∴点H的坐标为(,﹣).
∵点G与点K关于CD对称,
∴点G(0,0).
∴KM+MN+NK=MH+MN+GN.
当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.
∴GH==3.
∴KM+MN+NK的最小值为3.
(3)如图3所示:
∵y′经过点D,y′的顶点为点F,
∴点F(3,﹣).
∵点G为CE的中点,
∴G(2,).
∴FG=.
∴当FG=FQ时,点Q(3,),Q′(3,).
当GF=GQ时,点F与点Q″关于y=对称,
∴点Q″(3,2).
当QG=QF时,设点Q1的坐标为(3,a).
由两点间的距离公式可知:a+=,解得:a=﹣.
∴点Q1的坐标为(3,﹣).
综上所述,点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).
7、已知,如图,二次函数图象的顶点为,与轴交于、两点(点在点右侧),点、关于直线:对称.
(1)求、两点的坐标,并证明点在直线上;
(2)求二次函数解析式;
(3)过点B作直线交直线于K点,M、N分别为直线AH和直线上的两个动点,连结HN、NM、MK,求HN+NM+MK的最小值.
【解析】(1)依题意,得ax2+2ax?3a=0(a≠0),
两边都除以a得x2+2x?3=0,解得x1=?3,x2=1,
∵B点在A点右侧,∴A点坐标为(?3,0),B点坐标为(1,0),
答:A.?B两点坐标分别是(?3,0),(1,0).
证明:∵直线l:y=,
当x=?3时,y=,∴点A在直线l上.
(2)∵点H、B关于过A点的直线l:y=对称,∴AH=AB=4,
过顶点H作HC⊥AB交AB于C点,
则AC=,∴顶点H,
代入二次函数解析式,解得a=,
∴二次函数解析式为,
答:二次函数解析式为.
(3)直线AH的解析式为,
直线BK的解析式为,由,解得,即K(3,2),则BK=4,
∵点H、B关于直线AK对称,K(3,2),∴HN+MN的最小值是MB,
过K作KD⊥x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,
则QM=MK,QE=EK=2,AE⊥QK,
∴根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,
∵BK∥AH,∴∠BKQ=∠HEQ=90?,
由勾股定理得QB=
∴HN+NM+MK的最小值为8,专题68
(1)瓜豆原理中动点轨迹直线型最值问题
【专题说明】
动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.
【知识精讲】
动点轨迹为一条直线时,利用“垂线段最短”求最值。
当动点轨迹确定时可直接运用垂线段最短求最值
当动点轨迹不易确定是直线时,可通过以下三种方法进行确定
①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?
【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.
可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.
【引例】如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?
【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.
当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.
【模型总结】
必要条件:
主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
结论:
P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)
P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)
【例题】
1、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为  .
【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG最小值,可以将F点看成是由点B向点A运动,由此作出G点轨迹:
考虑到F点轨迹是线段,故G点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G点在位置,最终G点在位置(不一定在CD边),即为G点运动轨迹.
CG最小值即当CG⊥的时候取到,作CH⊥于点H,CH即为所求的最小值.
根据模型可知:与AB夹角为60°,故⊥.
过点E作EF⊥CH于点F,则HF==1,CF=,
所以CH=,因此CG的最小值为.
2、如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为(  )
A.
B.
C.1
D.2
【解析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图
∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,
∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,
∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,
在Rt△AOP和△COQ中,,∴Rt△AOP≌△COQ,∴AP=CQ,
易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,
∴PE+QF=(CQ+BQ)=BC==1,
∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,
∴MH=(PE+QF)=,即点M到AB的距离为,
而CO=1,∴点M的运动路线为△ABC的中位线,
∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.
3、如图,矩形中,,,点是矩形内一动点,且,则的最小值为_____.
【解析】为矩形,,又
点到的距离与到的距离相等,即点线段垂直平分线上,
连接,交与点,此时的值最小,

4、如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.
【解析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==,
故答案为:.
5、如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.
(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;
(2)连接AE,当AE的长最小时,求CD的长.
【解析】(1)补全图形如图1所示,AD=BE,理由如下:
∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,
由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.
(2)如图2,过点A作AF⊥EB交EB延长线于点F.
∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,
根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,
∵∠ACB=∠CBE=60°,∴AC∥EF,
∵AF⊥BE,∴AF⊥AC,
在Rt△ACF中,∴CF===,∴CD=CF=.
专题(2)
瓜豆原理中动点轨迹圆或圆弧型最值问题
【专题说明】
动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
确定动点轨迹为圆或者圆弧型的方法:
动点到定点的距离不变,则点的轨迹是圆或者圆弧。
当某条边与该边所对的角是定值时,该角的顶点的轨迹是圆,具体运用如下;
①见直角,找斜边,想直径,定外心,现圆形
②见定角,找对边,想周角,转心角,现圆形
【知识精讲】
如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
考虑:当点P在圆O上运动时,Q点轨迹是?
【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
【小结】确定Q点轨迹圆即确定其圆心与半径,
由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.
Q点轨迹相当于是P点轨迹成比例缩放.
根据动点之间的相对位置关系【分析】圆心的相对位置关系;
根据动点之间的数量关系【分析】轨迹圆半径数量关系.
如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.
考虑:当点P在圆O上运动时,Q点轨迹是?
【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.
考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
即可确定圆M位置,任意时刻均有△APO≌△AQM.
如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.
即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.
【模型总结】
为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.
此类问题的必要条件:两个定量
主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:
∠PAQ=∠OAM;
(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:
AP:AQ=AO:AM,也等于两圆半径之比.
按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
【例题】
1、如图,在中,,,,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是(

A.5
B.6
C.7
D.8
【解析】如图,设⊙O与AC相切于点D,连接OD,作垂足为P交⊙O于F,
此时垂线段OP最短,PF最小值为,
∵,,∴
∵,∴
∵点O是AB的三等分点,∴,,∴,
∵⊙O与AC相切于点D,
∴,∴,
∴,∴,
∴MN最小值为,
如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,
MN最大值,,
∴MN长的最大值与最小值的和是6.
故选B.
2、如图,在矩形纸片ABCD中,,,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是  
A.
B.3
C.
D.
【解析】以点E为圆心,AE长度为半径作圆,连接CE,当点在线段CE上时,的长取最小值,如图所示,
根据折叠可知:.
在中,,,,

的最小值.
故选D.
3、如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2
,△ADC与△ABC关于AC对
称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为(
)
A.1
B.
C.
D.2
【解析】连接AD,因为∠ACB=30°,所以∠BCD=60°,
因为CB=CD,所以△CBD是等边三角形,所以BD=DC.
因为DE=CF,∠EDB=∠FCD=60°,
所以△EDB≌△FCD,所以∠EBD=∠FDC,
因为∠FDC+∠BDF=60°,
所以∠EBD+∠BDF=60°,所以∠BPD=120°,
所以点P在以A为圆心,AD为半径的弧BD上,
直角△ABC中,∠ACB=30°,BC=2,所以AB=2,AC=4,
所以AP=2.
当点A,P,C在一条直线上时,CP有最小值,
CP的最小值是AC-AP=4-2=2.
故选D.
4、如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB'
F,连接B'
D,则B'
D的最小值是_____.
【解析】如图所示点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,B'D的值最小,
根据折叠的性质,△EBF≌△EB'F,∴∠B=∠EB'F,EB'=EB.
∵E是AB边的中点,AB=4,∴AE=EB'=2.又∵AD=6,∴DE2,∴B'D=22
5、如图,中,,,,是内部的一个动点,且满足,则线段长的最小值为________.
【解析】∵∠PAB+∠PBA=90°,∴∠APB=90°,∴点P在以AB为直径的弧上(P在△ABC内)
设以AB为直径的圆心为点O,如图
接OC,交☉O于点P,此时的PC最短,
∵AB=6,∴OB=3,又∵BC=4,∴,∴PC=5-3=2
6、如图,点在半圆上,半径,,点在弧上移动,连接,作,垂足为,连接,点在移动的过程中,的最小值是______.
【解析】如图,设AD的中点为点E,

由题意得,点H的运动轨迹在以点E为圆心,EA为半径的圆上
由点与圆的位置关系得:连接BE,与圆E交于点H,则此时取得最小值,
连接BD
AB为半圆O的直径,
7、如图,过抛物线上一点A作轴的平行线,交抛物线于另一点B,交轴于点C,已知点A的横坐标为.
(1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;
①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在轴上方时,求直线PD的函数表达式.
【解析】(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).
(2)①如图1中,
由题意点D在以O为圆心OC为半径的圆上,
∴当O、D、B共线时,BD的最小值=OB﹣OD=.
②如图2中,
图2
当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,
∴DE==3,∴点D的坐标为(4,3).
设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),
∴直线PD的解析式为y=﹣x+.
专题(3)
瓜豆原理中动点轨迹不确定型最值问题
【专题说明】
动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,
(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。
【知识精讲】
所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.
【例题】如图,在反比例函数的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图像上运动,若tan∠CAB=2,则k的值为(

A.2
B.4
C.6
D.8
【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.
【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?
【模型】一、借助直角三角形斜边上的中线
1、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是(

A.6
B.
C.
D.
【解析】如图,取CA的中点D,连接OD、BD,
则OD=CD=AC=×4=2,
由勾股定理得,BD==2,
当O、D、B三点共线时点B到原点的距离最大,
所以,点B到原点的最大距离是2+2.
【模型】二、借助三角形两边之和大于第三边,两边之差小于第三边
1、如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是(  )
A.1
B.3
C.3
D.
【解析】如图所示:过点C作CE⊥AB于点E,连接OE,
∵△ABC是等边三角形,∴CE=AC×sin60°=,AE=BE,
∵∠AOB=90°,∴EOAB,∴EC-OE≥OC,
∴当点C,O,E在一条直线上,此时OC最短,
故OC的最小值为:OC=CE﹣EO=3
故选B.
2、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=4,BC=2.运动过程中点D到点O的最大距离是______.
【解析】如图,取AB的中点E,连接OE、DE、OD,
∵OD≤OE+DE,
∴当O、D、E三点共线时,点D到点O的距离最大,
此时,∵AB=4,BC=2,∴OE=AE=AB=2,
DE==,
∴OD的最大值为+2,
3、如图,在中,,,,以线段为边向外作等边,点是线段的中点,连结并延长交线段于点.
(1)求证:四边形为平行四边形;
(2)求平行四边形的面积;
(3)如图,分别作射线,,如图中的两个顶点,分别在射线,上滑动,在这个变化的过程中,求出线段的最大长度.
【解析】(1)在中,,,,
在等边中,,,
为的中点,,又,,
在中,,为的中点,,,
,,,
又,,
又,,,
又,,即,四边形是平行四边形;
(2)在中,,,,
∴,

(3)取的中点,连结,,
,的最大长度
4、如图,在中,,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值为(  )
A.
B.
C.
D.
【解析】连接CN,
∵将绕顶点逆时针旋转得到,
∴,,
∴,,
∵是的中点,
∴,
∵在?CMN中,MN<CM+CN,当且仅当M,C,N三点共线时,MN=CM+CN=6,
∴线段的最大值为6.
故选D.
【模型】三、借助构建全等图形
1、如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是______.
【解析】如图,取AB的中点E,连接CE,PE.
∵∠ACB=90°,∠A=30°,∴∠CBE=60°,
∵BE=AE,∴CE=BE=AE,
∴△BCE是等边三角形,
∴BC=BE,
∵∠PBQ=∠CBE=60°,
∴∠QBC=∠PBE,
∵QB=PB,CB=EB,
∴△QBC≌△PBE(SAS),
∴QC=PE,
∴当EP⊥AC时,QC的值最小,
在Rt△AEP中,∵AE=,∠A=30°,
∴PE=AE=,
∴CQ的最小值为.
2、如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是(

A.6
B.3
C.2
D.1.5
【解析】
如图,取BC的中点G,连接MG,
∵旋转角为60°,∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,
又∵MB旋转到BN,∴BM=BN,
在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,
根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,
此时∠BCH=×60°=30°,CG=AB=×12=6,
∴MG=CG=×6=3,
∴HN=3;
故选:B.
【模型】四、借助中位线
1、如图,在等腰直角ABC
中,斜边
AB
的长度为
8,以
AC
为直径作圆,点P
为半圆上的动点,连接
BP
,取
BP
的中点
M
,则CM
的最小值为(

A.
B.
C.
D.
【解析】连接AP、CP,分别取AB、BC的中点E、F,连接EF、EM和FM,
∴EM、FM和EF分别是△ABP、△CBP和△ABC的中位线
∴EM∥AP,FM∥CP,EF∥AC,EF=,∴∠EFC=180°-∠ACB=90°
∵AC为直径,∴∠APC=90°,即AP⊥CP
∴EM⊥MF,即∠EMF=90°
∴点M的运动轨迹为以EF为直径的半圆上
取EF的中点O,连接OC,点O即为半圆的圆心
当O、M、C共线时,CM最小,如图所示,CM最小为CM1的长,
∵等腰直角ABC
中,斜边
AB
的长度为
8,∴AC=BC==
∴EF==,FC==,∴OM1=OF==
根据勾股定理可得OC=
∴CM1=OC-OM1=,即CM最小值为
故选C.
2、如图,抛物线与轴交于两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连接,则线段的最小值是(

A.
B.
C.
D.
【解析】∵,∴当时,,解得:,
∴A点与B点坐标分别为:(,0),(3,0),
即:AO=BO=3,
∴O点为AB的中点,
又∵圆心C坐标为(0,4),
∴OC=4,
∴BC长度=,
∵O点为AB的中点,E点为AD的中点,
∴OE为△ABD的中位线,即:OE=BD,
∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,
∴BD的最小值为4,
∴OE=BD=2,
即OE的最小值为2,
故选:A.专题
69
(1)一元二次方程在实际应用中的最值问题
【应用呈现】
近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.
(1)求2009年至2011年该县投入教育经费的年平均增长率;
(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.
【解析】(1)设每年平均增长的百分率为x.
6000=8640,
=1.44,
∵1+x>0,
∴1+x=1.2,
x=20%.
答:每年平均增长的百分率为20%;
(2)2012年该县教育经费为8640×(1+20%)=10368(万元)>9500万元.
故能实现目标.
2、如图,要建造一个四边形花圃ABCD,要求AD边靠墙,CD⊥AD,AD∥BC,AB∶CD=5∶4,且三边的总长为20
m.设AB的长为5x
m.
(1)请求AD的长;(用含字母x的式子表示)
(2)若该花圃的面积为50
m2,且周长不大于30
m,求AB的长.
【解析】(1)作BH⊥AD于点H,则AH=3x,由BC=DH=20-9x得AD=20-6x (2)由2(20-9x)+3x+9x≤30得x≥,由[(20-9x)+(20-6x)]×4x=50得3x2-8x+5=0,∴x1=,x2=1(舍去),∴5x=.答:AB的长为米 
【方法总结】
一、一元二次方程判别式求解
1、已知x、y为实数,且满足,,求实数m最大值与最小值。
【解析】由题意得
所以x、y是关于t的方程的两实数根,所以

解得
m的最大值是,m的最小值是-1。
2、已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是(  )
A.7
B.11
C.12
D.16
【解析】
∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,
∴m+n=2t,mn=t2﹣2t+4,
∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.
∵方程有两个实数根,
∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,
∴t≥2,
∴(t+1)2+7≥(2+1)2+7=16.
故选D.
二、配方法求最值
1、设a、b为实数,那么的最小值为_______。
【解析】
当,,即时,
上式等号成立。故所求的最小值为-1。
2、将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+的最小值为

【解析】
∵AB=6,AB=1:3,∴AD=6×=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴,∴MA?DN=BD?MD=4MD,∴MD+=MD+==,∴当,即MD=时MD+有最小值为.故答案为:.
三、
“夹逼法”求最值
1、不等边三角形的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。
【解析】设a、b、c三边上高分别为4、12、h
因为,所以
又因为,代入,得,所以
又因为,代入,得,所以
所以3国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口1万人,通过各方面的共同努力,2019年底该地区贫困人口减少到0.25万人,求该地区2017年底至2019年底贫困人口年平均下降的百分率.
【解析】设这两年全省贫困人口的年平均下降率为x,根据题意得(1﹣x)2=0.25,
解得:x=0.5=50%或x=1.5(舍去)
答:该地区2017年底至2019年底贫困人口年平均下降的百分率为50%.
2、某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.
(1)降价后,每件衬衫的利润为 
 元,平均每天的销量为 
 件;(用含x的式子表示)
(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?
【解析】(1)∵每件衬衫降价x元,
∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.
(2)依题意,得:(50﹣x)(20+2x)=1600,
整理,得:x2﹣40x+300=0,
解得:x1=10,x2=30.
∵为了扩大销售,尽快减少库存,∴x=30.
答:每件衬衫应降价30元.
3、2020年,我国脱贫攻坚在力度、广度、深度和精准度上都达到了新的水平,重庆市深度贫困地区脱贫进程明显加快,作风治理和能力建设初见成效,精准扶贫、精准脱贫取得突破性进展.为助力我市脱贫攻坚,某村村委会在网上直播销售该村优质农产品礼包,该村在今年1月份销售256包,2、3月该礼包十分畅销,销售量持续走高,在售价不变的基础上,3月份的销售量达到400包.
(1)若设2、3这两个月销售量的月平均增长率为a%,求a的值;
(2)若农产品礼包每包进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若该农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?
【解析】
(1)设2、3这两个月的月平均增长率为x.
由题意得:256(1+x)2=400,
解得:x1=25%,x2=﹣225%(舍去),
即2、3这两个月的月平均增长率为25%,
即a的值是25;
(2)设当农产品每袋降价m元时,该农产品在4月份可获利4620元.
根据题意可得:(40﹣25﹣m)(400+5m)=4620,
解得:m1=4,m2=﹣69(舍去),
答:当农产品每袋降价4元时,该农产品在4月份可获利4620元.
4、某商场第一年销售某品牌手机5000部,如果每年的销售量比上年增长相同的百分率x,且第三年比第二年多销售了1200部,求x的值.
【解析】
依题意,得:5000(1+x)2﹣5000(1+x)=1200,
整理,得:25x2+25x﹣6=0,
解得:x1==20%,x2=﹣(不合题意,舍去).
答:x的值为20%.
5、某通讯公司规定:一名客户如果一个月的通话时间不超过A分钟,那么这个月这名客户只要交10元通话费;如果超过A分钟,那么这个月除了仍要交10元通话费外,超过部分还要按每分钟元交费.
(Ⅰ)某名客户7月份通话90分钟,超过了规定的A分钟,则超过部分应交通话费 
 元(用含A的代数式表示);
(Ⅱ)下表表示某名客户8月份、9月份的通话情况和交费情况:
月份
通话时间/分钟
通话费总数/元
8月份
80
25
9月份
45
10
根据上表的数据,求A的值.
【解析】(I)超过部分应交通话费(90﹣A)元.
故答案为:(90﹣A).
(II)依题意,得:10+(80﹣A)=25,
整理,得:A2﹣80A+1500=0,
解得:A1=30,A2=50.
∵A≥45,
∴A=50.
答:A的值为50.
6、在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角,墙DF足够长,墙DE长为9米,现用20米长的篱笆围成一个矩形花园ABCD,点C在墙DF上,点A在墙DE上,(篱笆只围AB,BC两边).
(Ⅰ)根据题意填表;
BC(m)
1
3
5
7
矩形ABCD面积(m2)
 
 
 
 
 
 
 
 
(Ⅱ)能够围成面积为100m2的矩形花园吗?如能说明围法,如不能,说明理由.
【解析】
(I)1×(20﹣1)=19,3×(20﹣3)=51,5×(20﹣5)=75,7×(20﹣7)=91.
故答案为:19;51;75;91.
(II)不能,理由如下;
设BC=xm,则AB=(20﹣x)m,
依题意,得:x(20﹣x)=100,
整理,得:x2﹣20x+100=0,
解得:x1=x2=10.
∵10>9,
∴不能围成面积为100m2的矩形花园.
专题
(2)一次函数在实际应用中的最值问题
【专题说明】
1、通过图象获取信息
通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和【分析】,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.
【注】函数图象中的特殊点
观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.
2、一次函数图象的应用
一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.
【注】函数y=kx+b图象的变化形式
在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行【分析】,其图象可能是射线、线段或折线等等.
1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)乙队开挖到30
m时,用了________
h.开挖6
h时甲队比乙队多挖了_______
m.
(2)请你求出:
①甲队在0≤x≤6的时段内,y与x之间的函数关系式;
②乙队在2≤x≤6的时段内,y与x之间的函数关系式.
(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?
【分析】(1)由图象可以直接看出乙队开挖到30
m时,用了2
h.开挖6
h时甲队比乙队多挖了10
m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h).
【解析】
(1)2 10
(2)①y=10x.②y=5x+20.
(3)由题意,得10x=5x+20,解得x=4(h).
故当x为4
h时,甲、乙两队所挖的河渠长度相等.
2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x
km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2
600
km,那么这个单位租哪家车合算?
【分析】本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1
500;表明当x=1
500时,两个函数值相等;根据图象可知:x>1
500时,y2>y1;0<x<1
500时,y2<y1.
【解析】观察图象,得:
(1)每月行驶的路程小于1
500
km时,租国有出租车公司的车合算;
(2)每月行驶的路程为1
500
km时,租两家车的费用相同;
(3)如果每月行驶的路程为2
600
km,那么这个单位租个体车主的车合算.
析规律函数图象交点规律
两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处函数值相等
3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中速度.
行驶时间t(h)
0
1
2
3
油箱余油量y(L)
100
84
68
52
【分析】考查综合利用一次函数的相关知识解决问题的能力.
解法一:∵余油量y与行驶路程x的关系图象是一条直线,
∴可设关系式为y=kx+b(k≠0).
由图象可知y=kx+b经过两点(0,100)和(500,20),则有b=100,20=500k+b.
把b=100代入20=500k+b,得20=500k+100,解得k=-.
∴直线的解析式为y=-x+100.
当y=100时,x=0;
当y=84时,x=100.
由图表可知,油箱中的余油量从100
L到84
L,行驶时间是1
h,行驶路程是100
km.
∴A型汽车的速度为100
km/h.
解法二:由图表可知:A型汽车每行驶1
h的路程耗油16
L.
由图象可知:A型汽车耗油80
L所行驶的路程为500
km.
可设汽车耗油16
L所行驶的路程为xkm,
则500∶80=x∶16,解得x=100.
∴A型汽车1
h行驶的路程为100
km.
∴它的速度为100
km/h.
【小结】有时,我们利用一次函数的图象求一元一次方程的近似解.
3、有两个发电厂,每焚烧一吨垃圾,发电厂比发电厂多发40度电,焚烧20吨垃圾比焚烧30吨垃圾少1800度电.
(1)求焚烧1吨垃圾,和各发多少度电?
(2)两个发电厂共焚烧90吨垃圾,焚烧的垃圾不多于焚烧的垃圾的两倍,求厂和厂总发电量的最大值.
【解析】
(1)设焚烧1吨垃圾,发电厂发电度,发电厂发电度,则,解得:
答:焚烧1吨垃圾,发电厂发电300度,发电厂发电260度.
(2)设发电厂焚烧吨垃圾,则发电厂焚烧吨,总发电量为度,则
∵∴
∵随的增大而增大
∴当时,取最大值25800度.
4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.
(1)求A,B两种奖品的单价;
(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.
【解析】(1)设A的单价为x元,B的单价为y元,
根据题意,得,,A的单价30元,B的单价15元;
(2)设购买A奖品z个,则购买B奖品为个,购买奖品的花费为W元,
由题意可知,,,

当时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;
5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.
(1)改网店甲、乙两种口罩每袋的售价各多少元?
(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?
【解析】(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:,解这个方程组得:,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;
(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得,解这个不等式组得:222.2<m≤227.3,因m为整数,故有5种进货方案,分别是:
购进甲种口罩223袋,乙种口罩277袋;
购进甲种口罩224袋,乙种口罩276袋;
购进甲种口罩225袋,乙种口罩275袋;
购进甲种口罩226袋,乙种口罩274袋;
购进甲种口罩227袋,乙种口罩273袋;
设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.
6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.
(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买文化衫件数t(件)函数关系式
(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.
【解析】(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.
(2)根据题意得:,解得:30≤t≤32,∴有三种购买方案:
方案一:购买30件文化衫、15本相册;
方案二:购买31件文化衫、14本相册;
方案三:购买32件文化衫、13本相册.
∵W=8t+900中W随x的增大而增大,∴当t=30时,W取最小值,此时用于拍照的费用最多,∴为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.
7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.
【解析】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,
根据题意得:,解得:.
答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.
(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴,解得:5≤m≤7,∴有三种不同方案.
∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用最小,最小值为5000元
答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.
8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:
(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?
(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);
(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?
【解析】
(1)设购进篮球m个,排球n个,根据题意得:,解得:.
答:购进篮球40个,排球20个.
(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=(105﹣80)x+(70﹣50)(60﹣x)=5x+1200,∴y与x之间的函数关系式为:y=5x+1200.
(3)设购进篮球x个,则购进排球(60﹣x)个,根据题意得:,解得:40≤x≤.
∵x取整数,∴x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.
∵在y=5x+1200中,k=5>0,∴y随x的增大而增大,∴当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.
9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过
10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:
(1)①当x≤10时,y与x的关系式为:

②当x>10时,y与x的关系式为:

(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;
(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?
【解析】
(1)①由题意得:y=300x﹣600;
②由题意得:y=[300﹣12(x﹣10)]x﹣600,
即y=﹣12x2+420x﹣600;
(2)依题意有:﹣12x2+420x﹣600=3000,
解得x1=15,x2=20.
故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;
(3)、当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元);
当x>10时,y=﹣12x2+420x﹣600=﹣12(x2﹣35x)﹣600=﹣12(x﹣17.5)2+3075,
∴当x=17.5时,y有最大值.但x只能取整数,
∴x取17或18.
显然x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).
由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.
10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).
(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?
(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.
【解析】
(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:
,解得:
.
答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.
(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,∴18﹣n≥2n且18﹣n≤4n,∴
≤n≤6,∵n非负整数,∴n=4,5,6,相应的18﹣n=14,13,12;
∴购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;
∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A品种芒果6箱,B品种芒果12箱总费用最少.
专题
(3)二次函数在实际应用中的最值问题
1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?
【解析】
(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去).
答:该种水果每次降价的百分率是10%;
(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元);
当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元).
综上所述,y与x(1≤x<15)之间的函数关系式为:
,第10天时销售利润最大;
(3)设第15天在第14天的价格基础上最多可降a元,由题意得:380﹣127.5≤(4﹣a)(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a)﹣115,a≤0.5.
答:第15天在第14天的价格基础上最多可降0.5元.
2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
(1)请你根据表中数据,用所学过一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)
【解析】(1)假设P与的一次函数关系,设函数关系式,
则,解得,∴,
检验:当,当当,均符合一次函数解析式
∴所求的函数关系式,
(2)设日销售利润,
即,当时,有最大值为3000元,
故这批农产口的销售价格定为40元,才能使日销售利润最大,
(3)日获利,
即,对称轴这,
若,则当时,有最大值,即(不合题意),
若,则当时,有最大值,
把代入,可得,
当时,,解得,(舍去),
综上所述,的值为2.
3、怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份;
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少.
【解析】
(1)、设该店每天卖出A、B两种菜品分别为x、y份,
根据题意得:,解得:,
答:该店每天卖出这两种菜品共60份;
(2)、设A种菜品售价降0.5a元,即每天卖(20+a)份,总利润为w元,
因为两种菜品每天销售总份数不变,所以B种菜品卖(40﹣a)份,每份售价提高0.5a元.
则w=(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)
=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)
=﹣a2+12a+280=﹣(a﹣6)2+316,
当a=6,w最大,w=316
答:这两种菜品每天的总利润最多是316元.
4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).
(1)试求w与x之间的函数关系式;
(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?
【解析】
(1)根据题意,得:w=(﹣4x+220)x﹣1000=﹣4x2+220x﹣1000;
(2)∵w=﹣4x2+220x﹣1000=﹣4(x﹣27.5)2+2025,∴当x=27或28时,w取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.
5、把函数的图象绕点旋转,得到新函数的图象,我们称是关于点的相关函数.的图象的对称轴与轴交点坐标为.
(1)填空:的值为 
 (用含的代数式表示)
(2)若,当时,函数的最大值为,最小值为,且,求的解析式;
(3)当时,的图象与轴相交于两点(点在点的右侧).与轴相交于点.把线段原点逆时针旋转,得到它的对应线段,若线与的图象有公共点,结合函数图象,求的取值范围.
【解析】(1)
顶点围绕点旋转180°的对称点为,
,函数的对称轴为:,

(2)时,

①当时,时,有最小值,时,有最大值,
则,无解;
②时,时,有最大值,时,有最小值,
(舍去);
③当时,时,有最大值,时,有最小值,
,解得:或2(舍去0),
故;
(3),

点的坐标分别为,
当时,越大,则越大,则点越靠左,
当过点时,,解得:,
当过点时,同理可得:,
故:或;
当时,
当过点时,,解得:,
故:;
综上,故:或或.
6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是万元,收购成本为万元,求和的值;
(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.
①分别求出当和时,与的函数关系式;
②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)
【解析】(1)由题意得,解得
答:a的值为0.04,b的值为30.
(2)①当0≤t≤50时,设y与t的函数关系式为y=k1t+n1
把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,得解得
∴y与t的函数关系式为y=t+15
当50<t≤100时,设y与t的函数关系式为y=k2t+n2
把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得
∴y与t的函数关系式为y=t+30
②由题意得,当0≤t≤50时,
W=20000×(t+15)-(400t+300000)=3600t
∵3600>0,∴当t=50时,W最大值=180000(元)
当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250
∵-10<0,∴当t=55时,W最大值=180250
综上所述,当t为55天时,W最大,最大值为180250元.
7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m
.设饲养室为长为x(m),占地面积为.
(1)如图,问饲养室为长x为多少时,占地面积y
最大?
(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.
【解析】
(1)∵=,∴当x=25时,占地面积y最大;
(2)=,∴当x=26时,占地面积y最大.即当饲养室长为26m时,占地面积最大.∵26-25=1≠2,∴小敏的说法不正确.
8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:
第x天
1≤x≤6
6<x≤15
每天的销售量y/盒
10
x+6
(1)求p与x的函数关系式;
(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?
(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.
【解析】(1)设p=kx+b(k≠0),∵第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴,解得:,所以p=x+18;
(2)1≤x≤6时,w=10[50﹣(x+18)]=﹣10x+320,6<x≤15时,w=[50﹣(x+18)](x+6)=﹣x2+26x+192,所以,w与x的函数关系式为,
当1≤x≤6时,∵﹣10<0,∴w随x的增大而减小,∴当x=1时,w最大为﹣10+320=310,6<x≤15时,w=﹣x2+26x+192=﹣(x﹣13)2+361,∴当x=13时,w最大为361,
综上所述,第13天时当天的销售利润最大,最大销售利润是361元;
(3)w=325时,﹣x2+26x+192=325,x2﹣26x+133=0,解得x1=7,x2=19,所以,7≤x≤13时,即第7、8、9、10、11、12、13天共7天销售利润不低于325元.
9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.
(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;
(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.
①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?
②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?
【解析】
(1)根据题意得:
,解得:a=35,b=50;
(2)①由题意得:y=(x﹣40)[100﹣5(x﹣50)]
∴y=﹣5x2+550x﹣14000;
②∵y=﹣5x2+550x﹣14000=﹣5(x﹣55)2+1125,∴当x=55时,y最大=1125,∴销售单价为55元时,B商品每天的销售利润最大,最大利润是1125元.
10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.
(1)直接写出销售量y个与降价x元之间的函数关系式;
(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?
【解析】
(1)依题意有:y=10x+160;
(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∵-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;
(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).
答:他至少要准备10000元进货成本.
11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.
(1)直接写出销售量y个与降价x元之间的函数关系式;
(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?
【解析】
(1)依题意有:y=10x+160;
(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∵-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;
(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).
答:他至少要准备10000元进货成本.
12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:
(1)求y与x的函数解析式(也称关系式);
(2)求这一天销售西瓜获得的利润的最大值.
【解析】(1)当6x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),

,解得

∴当6x≤10时,
y=-200x+2200,当10<x≤12时,y=200,
综上,y与x的函数解析式为
(2)设利润为w元,
当6x≤10时,y=-200x+2200,
w=(x-6)y=(x-6)(-200x+200)=-200+1250,
∵-200<0,6≦x≤10,
当x=时,w有最大值,此时w=1250;
当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,
∴200>0,
∴w=200x-1200随x增大而增大,
又∵10<x≤12,∴当x=12时,w最大,此时w=1200,
1250>1200,∴w的最大值为1250,
答:这一天销售西瓜获得利润的最大值为1250元.
13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?
【解析】(1)设一次函数关系式为
由图象可得,当时,;时,
∴,解得
∴与之间的关系式为.
(2)设该公司日获利为元,由题意得
∵;
∴抛物线开口向下;
∵对称轴;
∴当时,随着的增大而增大;
∵,
∴时,有最大值;

即,销售单价为每千克60元时,日获利最大,最大获利为1950元.专题64
将军饮马模型与最值问题
【模型导入】
什么是将军饮马?
“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【模型描述】
如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?
【模型抽象】
如图,在直线上找一点P使得PA+PB最小?
这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.
【模型解析】
作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB
当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)
【模型展示】
【模型】一、两定一动之点点
在OA、OB上分别取点M、N,使得△PMN周长最小.
此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.
【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.
【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.
【解析】
当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.
【模型】二、两定两动之点点
在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
考虑PQ是条定线段,故只需考虑PM+MN+NQ最小值即可,类似,分别作点P、Q关于OA、OB对称,化折线段PM+MN+NQ为P’M+MN+NQ’,当P’、M、N、Q’共线时,四边形PMNQ的周长最小。
【模型】三、一定两动之点线
在OA、OB上分别取M、N使得PM+MN最小。
此处M点为折点,作点P关于OA对称的点P’,将折线段PM+MN转化为P’M+MN,即过点P’作OB垂线分别交OA、OB于点M、N,得PM+MN最小值(点到直线的连线中,垂线段最短)
题型一
将军饮马中两定一动模型与最值问题
【专题说明】
这类问题的解法主要是通过轴对称,将动点所在直线同侧的两定点中的一个映射到直线的另一侧,转化为两点之间线段最短问题。
1、如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是(

A.
B.
C.
D.
【解析】
在中,,AD是的中线,可得点B和点D关于直线AD对称,连结CE,交AD于点P,此时最小,为EC的长,故选B.
2、如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE的最小值_____.
【解析】如图:
连接DE交AC于点P,此时PD=PB,PB+PE=PD+PE=DE为其最小值,
∵四边形ABCD为正方形,且BE=2,AB=8,
∴∠DAB=90°,AD=AB=8,AE=AB-BE=6,
在Rt△ADE中,根据勾股定理,得DE=

=10.
∴PB+PE的最小值为10.
3、如图,在平面直角坐标系中,矩形的边交轴于点,轴,反比例函数的图象经过点,点的坐标为,.
(1)求反比例函数的解析式;
(2)点为轴上一动点,当的值最小时,求出点的坐标.
【解析】
(1)∵是矩形,∴,
∵,∴,∴,
又∵轴,∴,∴,

∴,即
把点
代入的得,
∴反比例函数的解析式为:.
(2)过点作垂足为,
∵,,
∴,∴,∴,
则点关于轴的对称点,直线与轴的交点就是所求点,此时最小,
设直线AB1的关系式为,将
,,代入得,
解得:,,
∴直线的关系式为,当时,,∴点
4、如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
【解析】
(1)设抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
当x=0时,y=﹣x2+2x+3=3,则C(0,3),
设直线AC的解析式为y=px+q,
把A(﹣1,0),C(0,3)代入得,解得,
∴直线AC的解析式为y=3x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),
作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),
∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,
而BD的值不变,∴此时△BDM的周长最小,
易得直线DB′的解析式为y=x+3,
当x=0时,y=x+3=3,∴点M的坐标为(0,3);
(3)存在.
过点C作AC的垂线交抛物线于另一点P,如图2,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=﹣x+b,
把C(0,3)代入得b=3,
∴直线PC的解析式为y=﹣x+3,
解方程组,解得或,则此时P点坐标为(,);
过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,
把A(﹣1,0)代入得+b=0,解得b=﹣,
∴直线PC的解析式为y=﹣x﹣,
解方程组,解得或,则此时P点坐标为(,﹣).
综上所述,符合条件的点P的坐标为(,)或(,﹣).
5、如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,.
(1)求抛物线的解析式和对称轴;
(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);
(3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)
【解析】
根据点,的坐标设二次函数表达式为:,
∵抛物线经过点,则,解得:,
抛物线的表达式为:
,函数的对称轴为:;
连接交对称轴于点,此时的值为最小,设BC的解析式为:,
将点的坐标代入一次函数表达式:得:解得:
直线的表达式为:,当时,,故点;
存在,理由:
四边形是以为对角线且面积为的平行四边形,则

点在第四象限,则,将该坐标代入二次函数表达式得:,或
故点的坐标为或.
题型二
将军饮马中一定两动模型与最值问题
【专题说明】
一定两动型可转化为两点之间线段最短和点到直线的垂线段最短问题,进而求最值。关键是作定点(或动点)关于动折点所在直线的对称点,通过等量代换转化问题。
【模型展示】
【模型】三、一定两动之点线
在OA、OB上分别取M、N使得PM+MN最小。
此处M点为折点,作点P关于OA对称的点P’,将折线段PM+MN转化为P’M+MN,即过点P’作OB垂线分别交OA、OB于点M、N,得PM+MN最小值(点到直线的连线中,垂线段最短)
【例题】
1、如图,在边长为的菱形中,,将沿射线的方向平移得到,分别连接,,则的最小值为____.
【解析】
如图,过C点作BD的平行线,以为对称轴作B点的对称点,连接交直线于点
根据平移和对称可知,当三点共线时取最小值,即,
又,
根据勾股定理得,,故答案为
2、点P是定点,在OA、OB上分别取M、N,使得PM+MN最小。
【解析】作点P关于OA对称的点P’,将折线段PM+MN转化为P’M+MN,即过点P’作OB垂线分别交OA、OB于点M、N,得PM+MN最小值(垂线段最短)
3、点P是定点,在OA、OB上分别取点M、N,使得△PMN周长最小.
【解析】分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.
3、如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
【解析】(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,
∴抛物线解析式为y=﹣x2+x+4;又∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),
∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,
当x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);
(2)在Rt△OBC中,BC==5,
设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,
∵∠MCN=∠OCB,∴当时,△CMN∽△COB,则∠CMN=∠COB=90°,
即,解得m=,此时M点坐标为(0,);
当时,△CMN∽△CBO,则∠CNM=∠COB=90°,
即,解得m=,此时M点坐标为(0,);
综上所述,M点的坐标为(0,)或(0,);
(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,
∵BD∥OC,∴∠BCO=∠DBC,
∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,
而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值=,
4、如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.
(1)猜想DG与CF的数量关系,并证明你的结论;
(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.
【解析】
(1)结论:CF=2DG.
理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,
∵DE=AE,∴AD=CD=2DE,
∵EG⊥DF,∴∠DHG=90°,
∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,
∴==,∴CF=2DG.
(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,
此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.
由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,
∴EH=2DH=2,∴HM==2,∴DM=CN=NK==1,
在Rt△DCK中,DK===2,
∴△PCD的周长的最小值为10+2.
5、如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是(  )
A.
B.
C.9
D.
【解析】
如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.
6、如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.
【解析】
解:作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P(,).故答案为:(,).
题型三
将军饮马中两定两动模型与最值问题
【专题说明】
运用平移变换,把保持平移后的线段与原来线段平行且相等的特性下,把无公共端点的两线段移动到具有公共端点的新位置,从而转化为两点之间线段最短问题求解最值。
【模型展示】
【模型】二、两定两动之点点
在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
考虑PQ是条定线段,故只需考虑PM+MN+NQ最小值即可,类似,分别作点P、Q关于OA、OB对称,化折线段PM+MN+NQ为P’M+MN+NQ’,当P’、M、N、Q’共线时,四边形PMNQ的周长最小。
【例题】
1、如图所示抛物线过点,点,且
(1)求抛物线的解析式及其对称轴;
(2)点在直线上的两个动点,且,点在点的上方,求四边形的周长最小值;
(3)点为抛物线上一点,连接,直线把四边形的面积分为3∶5两部分,求点的坐标.
【解析】
(1)∵OB=OC,∴点B(3,0),
则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,
故-3a=3,解得:a=-1,
故抛物线的表达式为:y=-x2+2x+3…①;
对称轴为:直线
(2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,
故CD+AE最小时,周长最小,
取点C关于函数对称点C(2,3),则CD=C′D,
取点A′(-1,1),则A′D=AE,
故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,
四边形ACDE的周长的最小值=AC+DE+CD+AE=+1+A′D+DC′=+1+A′C′=+1+;
(3)如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为3:5两部分,
又∵S△PCB:S△PCA=EB×(yC-yP):AE×(yC-yP)=BE:AE,
则BE:AE,=3:5或5:3,则AE=或,
即:点E的坐标为(,0)或(,0),
将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=-6或-2,
故直线CP的表达式为:y=-2x+3或y=-6x+3。。②
联立①②并解得:x=4或8(不合题意值已舍去),
故点P的坐标为(4,-5)或(8,-45).
2、如图,在矩形中,

,为的中点,若为边上的两个动点,且,若想使得四边形的周长最小,则的长度应为__________.
【解析】
如图,在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.
∵E为CD的中点,∴CE=2
∴GH=DF=5,EH=2+4=6,∠H=90°,
∵BC//GH
∴,
∴,
∴,
∴CQ=,
∴BP=CB-PQ-CQ=7-2-.
故答案为.
3、已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=_____.
【解析】作PE⊥l1于E交l2于F,在PF上截取PC=8,连接QC交l2于B,作BA⊥l1于A,
此时PA+AB+BQ最短.作QD⊥PF于D.在Rt△PQD中,∵∠D=90°,PQ=,PD=18,∴DQ==,∵AB=PC=8,AB∥PC,∴四边形ABCP是平行四边形,∴PA=BC,CD=10,∴PA+BQ=CB+BQ=QC===16.故答案为16.
4、如图,在Rt△ABC中,∠ACB=90°,AC=6.AB=12,AD平分∠CAB,点F是AC的中点,点E是AD上的动点,则CE+EF的最小值为  
A.3
B.4
C.
D.
【分析】此处E点为折点,可作点C关于AD的对称,对称点C’在AB上且在AB中点,化折线段CE+EF为C’E+EF,当C’、E、F共线时得最小值,C’F为CB的一半,故选C.
5、如图,在锐角三角形ABC中,BC=4,∠ABC=60°,
BD平分∠ABC,交AC于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是  
A.
B.2
C.
D.4
【分析】此处M点为折点,作点N关于BD的对称点,恰好在AB上,化折线CM+MN为CM+MN’.
因为M、N皆为动点,所以过点C作AB的垂线,可得最小值,选C.专题66
阿氏圆中的双线段模型与最值问题
【专题说明】
“阿氏圆”模型核心知识点是构造母子型相似,构造△PAB∽△CAP
推出
PA2
,即:半径的平方=原有线段
构造线段。
【模型展示】
如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P构成的图形为圆.
(1)角平分线定理:如图,在△ABC中,AD是∠BAC的角平分线,则.
证明:,,即
(2)外角平分线定理:如图,在△ABC中,外角CAE的角平分线AD交BC的延长线于点D,则.
证明:在BA延长线上取点E使得AE=AC,连接BD,则△ACD≌△AED(SAS),CD=ED且AD平分∠BDE,则,即.接下来开始证明步骤:
如图,PA:PB=k,作∠APB的角平分线交AB于M点,根据角平分线定理,,故M点为定点,即∠APB的角平分线交AB于定点;
作∠APB外角平分线交直线AB于N点,根据外角平分线定理,,故N点为定点,即∠APB外角平分线交直线AB于定点;又∠MPN=90°,定边对定角,故P点轨迹是以MN为直径的圆.
【例题】
1、如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.
(1)求抛物线的解析式;
(2)设点的横坐标为,当时,求的值;
(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.
【解析】(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x),把C(0,﹣3)代入得到a,∴抛物线的解析式为yx2x﹣3.
(2)在Rt△AOC中,tan∠OAC,∴∠OAC=60°.
∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA?tan30°=1,∴D(0,﹣1),
∴直线AD的解析式为yx﹣1,
由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).
∵FH=PH,∴1m﹣1﹣(m2m﹣3)
解得m或(舍弃),∴当FH=HP时,m的值为.
(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).
∵AH⊥AE,∴∠EAO=60°,∴EOOA=3,∴E(0,3).
∵C(0,﹣3),∴HC2,AH=2FH=4,∴QHCH=1,在HA上取一点K,使得HK,此时K().∵HQ2=1,HK?HA=1,∴HQ2=HK?HA,∴.
∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值
2、如图1所示,⊙O
的半径为
r,点
A、B
都在⊙O
外,P
为⊙O
上的动点,
已知
r=k·OB.连接
PA、PB,则当“PA+k·PB”的值最小时,P
点的位置如何确定?
【解析】1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP、OB;
2:计算连接线段OP、OB长度;
3:计算两线段长度的比值;
4:在OB上截取一点C,使得构建母子型相似:
5:连接AC,与圆0交点为P,即AC线段长为PA+K
PB的最小值。
本题的关键在于如何确定“k·PB”的大小,(如图
2)在线段
OB上截取
OC
使
OC=k·r,则可说明△BPO
与△PCO
相似,即
k·PB=PC。
∴本题求“PA+k·PB”的最小值转化为求“PA+PC”的最小值,即
A、P、C
三点共线时最小(如图
3),时AC线段长即所求最小值。
3、如图,在中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是  .
【分析】首先对问题作变式2AD+3BD=,故求最小值即可.
考虑到D点轨迹是圆,A是定点,且要求构造,条件已经足够明显.
当D点运动到AC边时,DA=3,此时在线段CD上取点M使得DM=2,则在点D运动过程中,始终存在.
问题转化为DM+DB的最小值,直接连接BM,BM长度的3倍即为本题答案.
4、如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则的最大值为_______.
【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=,从而将问题转化为求PD-PM的最大值.
连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.
1.如图,在Rt△ABC中,∠ACB=90°,CB=7,CA=9,⊙C半径为3,P为⊙C上一动点,连结AP,BP,则AP+BP的最小值为


A.
7
B.
5
C.
4+
D.
2
2.如图,在Rt△ABC中,CB=4,CA=5,⊙C半径为2,P为圆上一动点,连结AP,BP,则AP+BP的最小值为__________.
3.如图,正方形ABCD边长为2,内切圆O上一动点P,连接AP、DP,则AP+eq
\f(,2)PD的最小值为______.
4.如图,等边三角形ABC边长为4,圆O是△ABC的内切圆,P是圆O上一动点,连接PB、PC,则BP+CP的最小值为______________.
5.如图,在平面直角坐标系中,M(6,3),N(10,0),A(5,0),点P为以OA为半径的圆O上一动点,则PM+PN的最小值为_______________
6.(反向操作)如图,∠AOB=90°,OA=OB=1,圆O的半径为,P是圆O上一动点,求PA+PB的最小值.
7.(反向操作)已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是弧CD上一点,求2PA+PB的最小值.
8.(2019日照)如图1,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B
(1)求抛物线解析式及B点坐标;
(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积
(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由
(1)
(2)S=,m=3,即M(3,-4)时,四边形AMBC面积最大,最大面积等于18
(3)
9.
(2017?兰州)如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=﹣x2+bx+c的表达式;
(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.
10.
(2016?济南)如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.
(1)求a的值和直线AB的函数表达式;
(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;
(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.
11.
(2018?东台市一模)如图,抛物线y=﹣x2+bx+c(b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.
(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
①探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
②试求出此旋转过程中,(NA+NB)的最小值.
A
P
B
C
PAGE
同课章节目录