5.2.1求解二元一次方程组(1) 课件(共17张PPT)

文档属性

名称 5.2.1求解二元一次方程组(1) 课件(共17张PPT)
格式 pptx
文件大小 1.5MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2021-02-06 18:07:25

图片预览

文档简介

5.2.1求解二元一次方程组(1)
第五章 二元一次方程组
2020-2021北师大版八年级数学上册
1.会用代入法解二元一次方程组.(重点、难点)
学习目标
 
怎么求x、y的值呢?
昨天,我们8个人去红山公园玩,买门票花了34元.
每张成人票5元,每张儿童票3元.他们到底去了几个成人、几个儿童呢?
还记得下面这一问题吗?
设他们中有x个成人,y个儿童.
新课导入
观察与思考
5x+3(8-x)=34
x+y=8,
5x+3y=34
解:设去了x个成人,则去了(8-x)个儿童,根据题意,得:
解得:x=5.
将x=5代入
8-x=8-5=3.
答:去了5个成人, 3个儿童.
用一元一次方程求解
解:设去了x个成人,去了y个儿童,根据题意,得:
用二元一次方程组求解
观察:二元一次方程组和一元一次方程有何联系?这对你解二元一次方程组有何启示?
y=8-x
用代入法解二元一次方程组
探究新知
知识点
用二元一次方程组求解
由①得:y = 8-x. ③
将③代入②得:
5x+3(8-x)=34.
解得:x = 5.
把x = 5代入③得:y = 3.
所以原方程组的解为:
x+y=8①
5x+3y=34②
x+y=8
5x+3y=34
5x+3(8-x)=34
第一个方程x+y=8
说明y=8-x
将第二个方程5x+3y=34的y换成8-x
解得x=5
代入y=8-x
得y=3
y= 3
x=5
思考:从

达到了什么目的?怎样达到的?
x+y=8
5x+3y=34
5x+3(8-x)=34
二元一次方程组
一元一次方程
消 元
转化
消除其中一个未知数,将二元一次方程组转化成解一元一次方程的想法,叫做消元思想.
归纳总结
从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解.这种方法称为代入消元法,简称代入法.
将y=1代入② ,得 x=4.
经检验, x=4,y=1适合原方程组.
所以原方程组的解是
x=5,
y=2.
解:将②代入①,得 3(y+3)+2y=14
3y +9+2y =14
5y=5
y=1.
例1:解方程组
3x+2y=14 ①
x=y+3 ②
检验可以口算或在草稿纸上验算,以后可以不必写出.
例题讲解
将y=2代入③ ,得 x=5.
所以原方程组的解是
x=5,
y=2.
解:由②,得 x=13-4y ③
将③代入①,得 2(13 - 4y)+3y=16
26 –8y +3y =16
-5y=-10
y=2
例2:解方程组
2x+3y=16 ①
x+4y=13 ②
例题讲解
归纳总结
解二元一次方程组的步骤:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.
第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.
第三步:解这个一元一次方程,得到一个未知数的值.
第四步:回代求出另一个未知数的值.
第五步:把方程组的解表示出来.
第六步:检验(口算或在草稿纸上进行笔算),即把求得的解代入每一个方程看是否成立.
由①直接代入②
下列各方程组中,应怎样代入消元?
由①得y=7x –11 ③
将③代入②
x=4y-1 ①
3x +y=10 ②
7x-y=11 ①
5x +2y=0 ②
小技巧: 用代入法时,往往对方程组中系数为1的未知数所在的方程进行变形代入.
例3:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到35分,那么这个队胜负场数分别是多少?
解 设胜的场数是x,负的场数是y,可列方程组:
由①得 y=20-x . ③
将③代入②,得 2x+20-x=35 .
解得 x=15.
将 x=15代入③得y=5.
则这个方程组的解是


例题讲解
y=2x  
x+y=12 
(1)
(2)
2x=y-5
4x+3y=65
解:
(1)
x=4
y=8
(2)
1.解下列方程组.
x=5
y=15
课堂练习
由①直接代入②
2.下列各方程组中,应怎样代入消元?
由①得y=7x –11 ③
将③代入②
x=4y-1 ①
3x +y=10 ②
7x-y=11 ①
5x +2y=0 ②
小技巧: 用代入法时,往往对方程组中系数为1的未知数所在的方程进行变形代入.
解二元一次方程组
基本思路“消元”
代入法解二元一次方程组的一般步骤
变:用含一个未知数的式子表示另一个未知数
代:用这个式子替代另一个方程中相应未知数
求:求出两个未知数的值
写:写出方程组的解
课堂小结
谢谢聆听