2021年九年级数学中考复习——
圆的专题:
解答题压轴专项训练(十)
1.如图,四边形ABCD内接于⊙O,AC是⊙O的直径,过点B作BE⊥AD,垂足为点E,AB平分∠CAE.
(1)判断BE与⊙O的位置关系,并说明理由;
(2)若∠ACB=30°,⊙O的半径为4,请求出图中阴影部分的面积.
2.如图,已知△ABC中,AB=AC,以AB为直径的⊙O交
BC于点D,过D作DE⊥AC于E.
(1)求证:直线DE是⊙O的切线;
(2)若CD=2,∠ACB=30°,分别求AB,OE的大小.
3.如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.
(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;
(2)若的长为π,求“回旋角”∠CPD的度数;
(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP的长.
4.如图,已知△ABC内接于⊙O,P是圆外一点,PA为⊙O的切线,且PA=PB,连接OP,线
段AB与线段OP相交于点D.
(1)求证:PB为⊙O的切线;
(2)若tan∠BCA=,⊙O的半径为10,求线段PD的长.
5.(1)【学习心得】
于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.
例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=
°.
(2)【问题解决】
如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的数.
(3)【问题拓展】
如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是
.
6.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
7.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=,⊙O的半径为3,求OA的长.
8.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=10,tan∠BDC=.
(1)求⊙O的半径长;
(2)求线段CF长.
9.如图,在平面直角坐标系中,A(0,4),B(3,4),P为线段OA上一动点,过O,P,B三点的圆交x轴正半轴于点C,连结AB,PC,BC,设OP=m.
(1)求证:当P与A重合时,四边形POCB是矩形.
(2)连结PB,求tan∠BPC的值.
(3)记该圆的圆心为M,连结OM,BM,当四边形POMB中有一组对边平行时,求所有满足条件的m的值.
(4)作点O关于PC的对称点O',在点P的整个运动过程中,当点O'落在△APB的内部(含边界)时,请写出m的取值范围.
10.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
参考答案
1.解:(1)BE与⊙O相切,
理由:连接BO,
∵OA=OB,
∴∠OAB=∠OBA,
∵AB平分∠CAE,
∴∠OAB=∠BAE,
∴∠OBA=∠BAE,
∵BE⊥AD,
∴∠AEB=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE+∠OBA=90°,即∠EBO=90°,
∴BE⊥OB,
∴BE与⊙O相切;
(2)∵∠ACB=30°,
∴∠AOB=60°,
∵OA=OB,
∴△ABO是等边三角形,
∴∠OBA=60°,OA=OB=AB=4,
∴∠ABE=30°,
∴AE=2,BE=2,
∴S阴影=S四边形AEBO﹣S扇形AOB=×(2+4)×2﹣=6﹣.
2.解:(1)连接OD,则OD=OB,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C.
∴OD∥AC,
∴∠ODE=∠DEC=90°,
∴DE是⊙O的切线;
(2)连接AD,
∵AB为直径
∴∠ADB=90°,
∵AB=AC∠ACB=30°
∴BD=DC∠B=∠ACB=30°,
∵CD=2,
∴BD=2,
在Rt△ABD中,cos∠B=,
∴AB===4,
∴OD=OB=AB=2,
在Rt△CDE中,sin∠C=,
∴DE=DCsin∠C=2×=,
在Rt△ODE中,OE2=OD2+DE2=22+()2=7,
∴OE=.
3.解:∠CPD是直径AB的“回旋角”,
理由:∵∠CPD=∠BPC=60°,
∴∠APD=180°﹣∠CPD﹣∠BPC=180°﹣60°﹣60°=60°,
∴∠BPC=∠APD,
∴∠CPD是直径AB的“回旋角”;
(2)如图1,∵AB=26,
∴OC=OD=OA=13,
设∠COD=n°,
∵的长为π,
∴,
∴n=45,
∴∠COD=45°,
作CE⊥AB交⊙O于E,连接PE,
∴∠BPC=∠OPE,
∵∠CPD为直径AB的“回旋角”,
∴∠APD=∠BPC,
∴∠OPE=∠APD,
∵∠APD+∠CPD+∠BPC=180°,
∴∠OPE+∠CPD+∠BPC=180°,
∴点D,P,E三点共线,
∴∠CED=∠COD=22.5°,
∴∠OPE=90°﹣22.5°=67.5°,
∴∠APD=∠BPC=67.5°,
∴∠CPD=45°,
即:“回旋角”∠CPD的度数为45°,
(3)①当点P在半径OA上时,如图2,过点C作CF⊥AB交⊙O于F,连接PF,
∴PF=PC,
同(2)的方法得,点D,P,F在同一条直线上,
∵直径AB的“回旋角”为120°,
∴∠APD=∠BPC=30°,
∴∠CPF=60°,
∴△PCF是等边三角形,
∴∠CFD=60°,
连接OC,OD,
∴∠COD=120°,
过点O作OG⊥CD于G,
∴CD=2DG,∠DOG=∠COD=60°,
∴DG=ODsin∠DOG=13×sin60°=,
∴CD=13,
∵△PCD的周长为24+13,
∴PD+PC=24,
∵PC=PF,
∴PD+PF=DF=24,
过O作OH⊥DF于H,
∴DH=DF=12,
在Rt△OHD中,OH==5,
在Rt△OHP中,∠OPH=30°,
∴OP=10,
∴AP=OA﹣OP=3;
②当点P在半径OB上时,
同①的方法得,BP=3,
∴AP=AB﹣BP=23,
即:满足条件的AP的长为3或23.
4.(1)证明:连接OA、OB,如右图所示,
∵PA=PB,OA=OB,OP=OP,
∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP,
∵PA为⊙O的切线,
∴∠OAP=90°,
∴∠OBP=90°,
∴PB为⊙O的切线;
(2)解:∵△OAP≌△OBP,
∴∠AOP=∠BOP,
又∵∠AOB=2∠BCA=∠AOP+∠BOP,
∴∠BCA=∠AOP,
∵tan∠BCA=,⊙O的半径为10,
∴tan∠AOP=,OA=10,
∴AP=OA?tan∠AOP=10×=,OD=6,
∴OP=,
∴PD=OP﹣OD=.
5.解:(1)如图1,∵AB=AC,AD=AC,
∴以点A为圆心,点B、C、D必在⊙A上,
∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,
∴∠BDC=∠BAC=45°,
故答案是:45;
(2)如图2,取BD的中点O,连接AO、CO.
∵∠BAD=∠BCD=90°,
∴点A、B、C、D共圆,
∴∠BDC=∠BAC,
∵∠BDC=25°,
∴∠BAC=25°,
(3)如图3,在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS),
∴∠1=∠2,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS),
∴∠2=∠3,
∴∠1=∠3,
∵∠BAH+∠3=∠BAD=90°,
∴∠1+∠BAH=90°,
∴∠AHB=180°﹣90°=90°,
取AB的中点O,连接OH、OD,
则OH=AO=AB=1,
在Rt△AOD中,OD===,
根据三角形的三边关系,OH+DH>OD,
∴当O、D、H三点共线时,DH的长度最小,
最小值=OD﹣OH=﹣1.
(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)
故答案为:﹣1.
6.解:(1)∵A的坐标为(0,6),N(0,2),
∴AN=4,
∵∠ABN=30°,∠ANB=90°,
∴AB=2AN=8,
∴由勾股定理可知:NB=,
∴B(,2).
(2)连接MC,NC
∵AN是⊙M的直径,
∴∠ACN=90°,
∴∠NCB=90°,
在Rt△NCB中,D为NB的中点,
∴CD=NB=ND,
∴∠CND=∠NCD,
∵MC=MN,
∴∠MCN=∠MNC,
∵∠MNC+∠CND=90°,
∴∠MCN+∠NCD=90°,
即MC⊥CD.
∴直线CD是⊙M的切线.
7.(1)证明:连结OC,如图,
∵OA=OB,CA=CB,
∴OC⊥AB,
∴直线AB是⊙O的切线;
(2)解:作DH⊥OC于H,如图,
∵DE为直径,
∴∠DCE=90°,
在Rt△DCE中,tan∠CED==,
设CD=x,则CE=2x,
∴DE==x,
∴x=6,解得x=,
∴CD=,
∵∠ECO+∠OCD=90°,
而OE=OC,
∴∠E=∠ECO,
∴∠E+∠OCD=90°,
∵∠HCD+∠CDH=90°,
∴∠CDH=∠E,
在Rt△CDH中,tan∠CDH==,
设CH=t,则DH=2t,
∴CD=t,
∴t=,解得t=,
∴CH=,
∴OH=OC﹣CH=,
∵DH∥BC,
∴=,即=,
∴OB=5,
∴OA=5.
8.解:(1)如图,连接BC,
∵AB为直径,
∴∠ACB=90°,
∵∠A=∠BDC,
∴tanA=,
在Rt△ACB中,tanA==,
设BC=3x,AC=4x,
∴AB=5x,
而4x=10,
∴x=,
∴AB=5x=,
∴⊙O的半径长为;
(2)∵BF为切线,
∴AB⊥BF,
在Rt△ABF中,∵tanA==,
∴BF=×=,
∴AF==,
∴CF=AF﹣AC=﹣10=.
9.解:(1)∵∠COA=90°
∴PC是直径,
∴∠PBC=90°
∵A(0,4)B(3,4)
∴AB⊥y轴
∴当A与P重合时,∠OPB=90°
∴四边形POCB是矩形
(2)连结OB,(如图1)
∴∠BPC=∠BOC
∵AB∥OC
∴∠ABO=∠BOC
∴∠BPC=∠BOC=∠ABO
∴tan∠BPC=tan∠ABO=
(3)∵PC为直径
∴M为PC中点
①如图2,当OP∥BM时,延长BM交x轴于点N
∵OP∥BM
∴BN⊥OC于N
∴ON=NC,四边形OABN是矩形
∴NC=ON=AB=3,BN=OA=4
设⊙M半径为r,则BM=CM=PM=r
∴MN=BN﹣BM=4﹣r
∵MN2+NC2=CM2
∴(4﹣r)2+32=r2
解得:r=
∴MN=4﹣
∵M、N分别为PC、OC中点
∴m=OP=2MN=
②如图3,当OM∥PB时,∠BOM=∠PBO
∵∠PBO=∠PCO,∠PCO=∠MOC
∴∠OBM=∠BOM=∠MOC=∠MCO
在△BOM与△COM中
∴△BOM≌△COM(AAS)
∴OC=OB==5
∵AP=4﹣m
∴BP2=AP2+AB2=(4﹣m)2+32
∵∠ABO=∠BOC=∠BPC,∠BAO=∠PBC=90°
∴△ABO∽△BPC
∴
∴PC=
∴PC2=BP2=[(4﹣m)2+32]
又PC2=OP2+OC2=m2+52
∴[(4﹣m)2+32]=m2+52
解得:m=或m=10(舍去)
综上所述,m=或m=
(4)∵点O与点O'关于直线对称
∴∠PO'C=∠POC=90°,即点O'在圆上
当O'与O重合时,得m=0
当O'落在AB上时,则m2=4+(4﹣m)2,得m=
当O'与点B重合时,得m=
∴0≤m≤或m=
10.(1)证明:连接OM,如图1,
∵BM是∠ABC的平分线,
∴∠OBM=∠CBM,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠CBM=∠OMB,
∴OM∥BC,
∵AB=AC,AE是∠BAC的平分线,
∴AE⊥BC,
∴OM⊥AE,
∴AE为⊙O的切线;
(2)解:设⊙O的半径为r,
∵AB=AC=6,AE是∠BAC的平分线,
∴BE=CE=BC=2,
∵OM∥BE,
∴△AOM∽△ABE,
∴=,即=,解得r=,
即设⊙O的半径为;
(3)解:作OH⊥BE于H,如图,
∵OM⊥EM,ME⊥BE,
∴四边形OHEM为矩形,
∴HE=OM=,
∴BH=BE﹣HE=2﹣=,
∵OH⊥BG,
∴BH=HG=,
∴BG=2BH=1.