9.1.2、9.1.3分层随机抽样、获取数据的途径-【新教材】人教A版(2019)高中数学必修第二册课件(共41张PPT)+练习Word含解析

文档属性

名称 9.1.2、9.1.3分层随机抽样、获取数据的途径-【新教材】人教A版(2019)高中数学必修第二册课件(共41张PPT)+练习Word含解析
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-02-09 11:18:57

文档简介

9.1.2 分层随机抽样
9.1.3 获取数据的途径
基础过关练 
     
题组一 分层随机抽样
1.下列抽样中,最适合用分层随机抽样方法的是(  )
A.某报告厅有32排座位,每排有40个座位,座位号是1~40,有一次报告厅坐满了听众,为了听取听众的意见,报告会结束以后要留下32名听众进行座谈
B.从10台冰箱中抽取3台进行质量检验
C.某乡农田有山地8
000亩,丘陵12
000亩,平地24
000亩,洼地4
000亩,现抽取农田480亩估计全乡农田的平均产量
D.从50个零件中抽取5个进行质量检验
2.(2020湖南长沙长郡中学模块检测)某次娱乐节目中有A、B、C三个方阵,其人数之比为3∶3∶4,现用比例分配的分层随机抽样方法抽取一个容量为n的样本,其中方阵A被抽取的人数为12,则n=(  )
A.20
B.25
C.30
D.40
3.某林场有树苗30
000棵,其中松树苗4
000棵.为调查树苗的生长情况,采用比例分配的分层随机抽样方法抽取一个容量为150的样本,则样本中松树苗的棵数为(深度解析)
A.30
B.25
C.20
D.15
4.(2020山东滕州一中高一网课效果检测)某中学的高一、高二、高三三个年级共有学生1
350人,其中高一年级有500人,高三年级比高二年级少50人,为了解该校学生的健康状况,现采用比例分配的分层随机抽样方法进行调查,在抽取的样本中,高一年级学生有120人,则该样本中高二年级学生的人数为(  )
A.80
B.96
C.108
D.110
一批产品中有一级品100个,二级品60个,三级品40个,用分层随机抽样方法从这批产品中抽取一个容量为20的样本,请写出抽样过程.
深度解析
题组二 分层随机抽样中的总体平均数与样本平均数
6.分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为    .?
7.某学校有高中学生500人,其中男生320人,女生180人,为了了解该校全体高中学生的身高信息,按照比例分配的分层随机抽样方法抽取了男生32人,女生18人.通过计算得到男生身高的样本平均数为173.5
cm,女生身高的样本平均数为163.8
cm,估计该校全体高中学生身高的平均数为    .(保留一位小数)?
8.某地区有高中生7
200人,初中生11
800人,小学生12
000人.当地教育部门为了了解本地区中小学生的近视率,采用分层随机抽样的方法,按高中生、初中生、小学生进行分层,得到高中生、初中生、小学生的近视率分别为80%、70%、36%.
(1)如果在各层中按比例分配样本,总样本量为310,那么在高中生、初中生、小学生中分别抽取了多少人?在这种情况下,请估计该地区全体中小学生的近视率;
(2)如果从高中生、初中生、小学生中抽取的样本量分别为60、100和150,那么在这种情况下,抽取的样本的近视率是多少?该地区全体中小学生的近视率约为多少?
题组三 获取数据的途径
9.下列要研究的数据一般通过试验获取的是(  )
A.某品牌电视机的市场占有率
B.某电视连续剧在全国的收视率
C.某校七年级一班的男、女同学比例
D.某型号炮弹的射程
10.“中国天眼”为500米口径球面射电望远镜(简称FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是(  )
A.通过调查获取数据
B.通过试验获取数据
C.通过观察获取数据
D.通过查询获得数据
答案全解全析
基础过关练
1.C A中总体所含个体无差异且个数较多,不适合用分层随机抽样;B,D中总体所含个体无差异且个数较少,适合用简单随机抽样;C中总体所含个体差异明显,适合用分层随机抽样.
2.D 由题意得n×=12,解得n=40,故选D.
3.C 样本中松树苗的棵数为4
000×=4
000×=20.
方法技巧
进行分层随机抽样的相关计算时,常利用以下关系式巧解:
(1)
=;
(2)总体中某两层的个体总数之比=样本中这两层抽取的个体数之比.
4.C 设该校高二年级共有学生x人,则x+x-50+500=1
350,解得x=450,所以高一、高二、高三三个年级的学生人数分别为500,450,400.抽样比为=,所以样本中高二年级学生的人数为450×=108,故选C.
5.解析 第一步,确定抽样比,由题意得,抽样比为=;
第二步,确定各层抽取的样本数,一级品:100×=10,二级品:60×=6,三级品:40×=4;
第三步:采用简单随机抽样的方法,从各层分别抽取样本;
第四步,把抽取的个体组合在一起构成所需样本.
方法技巧
当采用分层随机抽样时,应严格按照分层随机抽样的步骤进行,即先确定抽样比,然后进行层内抽样,最后将各个层的样本综合起来,组成所要求的样本.在进行层内抽样时,需要注明所采用的简单随机抽样方法,即抽签法或随机数法,根据两种抽样方法的特点以及适用范围选用合适的方法即可.
6.答案 6
解析 样本的平均数为×3+×8=6.
7.答案 170.0
cm
解析 样本平均数=×173.5+×163.8≈170.0(cm).
由于采用了比例分配的分层随机抽样方法,所以估计该校全体高中学生身高的平均数为170.0
cm.
8.解析 (1)分配比例为
=,所以在高中生、初中生、小学生中分别抽取7
200×=72(人),11
800×=118(人),12
000×=120(人).总样本量为310的学生的近视率为×80%+×70%+×36%≈59%.在比例分配的分层随机抽样中,我们直接用样本平均数估计总体平均数,所以可以估计该地区全体中小学生的近视率为59%.
(2)抽取的样本的近视率是×80%+×70%+×36%≈55%.
用各层的样本平均数估计该层的总体平均数,由总体量为7
200+11
800+12
000=31
000,得总体平均数为×80%+×70%+×36%≈59%,即该地区全体中小学生的近视率约为59%.
9.D 选项D中某型号炮弹的射程一般通过试验获取.
10.C 建造“中国天眼”的目的是通过观察获取数据.(共41张PPT)
第九章
统计
9.1 随机抽样
9.1.2 分层随机抽样
9.1.3 获取数据的途径
必备知识·探新知
关键能力·攻重难
课堂检测·固双基
素养作业·提技能
素养目标·定方向
素养目标·定方向
素养目标
学法指导
1.了解分层随机抽样的特点和适用范围.(数学抽象)
2.了解分层随机抽样的必要性,掌握各层样本量比例分配的方法.(数据分析)
3.结合具体实例,掌握分层随机抽样的样本均值.(数学运算)
4.知道获取数据的基本途径,包括:统计报表和年鉴、社会调查、试验设计、普查和抽样、互联网等.(数据分析)
1.对比简单随机抽样的特点,感受分层随机抽样中“层”的含义.
2.通过具体的案例,体会层次的差异性,并感受“层”与“层”之间的异同以及比例分配的必要性.
3.在简单随机抽样的基础上,深化对分层随机抽样样本平均数的理解.
必备知识·探新知
一般地,按_____________变量把总体划分成若干个_________,每个个体_______________一个子总体,在每个子总体中独立地进行_______________,再把所有子总体中抽取的样本合在一起作为_________,这样的抽样方法称为分层随机抽样.
(1)每一个子总体称为层,在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为___________.
分层随机抽样
知识点1
一个或多个 
子总体 
属于且仅属于 
简单随机抽样 
总样本 
比例分配 
获取数据的基本途径有_________________、_________________、___________________、___________________等.
获取数据的途径
知识点2
通过调查获取数据 
通过试验获取数据 
通过观察获取数据 
通过查询获得数据 
[知识解读] 1.分层随机抽样的实施步骤
第一步,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体;
第二步,在每个子总体中独立地进行简单随机抽样;
第三步,把所有子总体中抽取的样本合在一起作为总样本.
2.分层随机抽样适用于总体中个体之间差异较大的情形
4.分层随机抽样下总体平均数的估计
在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M和N,抽取的样本量分别为m和n.我们用X1,X2,…,XM表示第1层各个个体的变量值,用x1,x2,…,xm表示第1层样本的各个个体的变量值;用Y1,Y2,…,YN表示第2层各个个体的变量值,用y1,y2,…,yn表示第2层样本的各个个体的变量值,则第1层的总体平均数和样本平均数分别为
关键能力·攻重难
 (1)某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适
(  )
A.抽签法  
B.随机数
C.简单随机抽样  
D.分层随机抽样
题型探究
题型一
对分层随机抽样概念的理解
典例
1
D 
(2)分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体被等可能抽取,必须进行
(  )
A.每层等可能抽样
B.每层可以不等可能抽样
C.所有层按同一抽样比等可能抽样
D.所有层抽取的个体数量相同
C 
[分析] 是否适合用分层随机抽样,首先判断总体是否可以“分层”.
[解析] (1)总体由差异明显的三部分构成,应选用分层随机抽样.
(2)为了保证每个个体等可能的被抽取,分层随机抽样时必须在所有层都按同一抽样比等可能抽取.
[归纳提升] 1.使用分层抽样的前提
分层随机抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体,而层内个体间差异较小.
2.使用分层随机抽样应遵循的原则
(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;
(2)分层随机抽样为保证每个个体等可能抽取,需遵循在各层中进行简单随机抽样,每层样本量与每层个体数量的比等于抽样比.
【对点练习】? 下列问题中,最适合用分层随机抽样抽取样本的是
(  )
A.从10名同学中抽取3人参加座谈会
B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本
C.从1
000名工人中,抽取100人调查上班途中所用时间
D.从生产流水线上,抽取样本检查产品质量
B 
[解析] A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异但个数较多,不适合用分层随机抽样;B中总体所含个体差异明显,适合用分层随机抽样.
 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?
[解析] 用分层随机抽样来抽取样本,步骤如下:
(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.
题型二
分层随机抽样的应用
典例
2
[归纳提升] 分层随机抽样的步骤
【对点练习】? 某市的3个区共有高中学生20
000人,且3个区的高中学生人数之比为2︰3︰5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.
(1)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层随机抽样调查,假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为
(  )
A.101  
B.808  
C.1
212  
D.2
012
题型三
分类抽样的相关计算
典例
3
B 
(2)将一个总体分为A,B,C三层,其个体数之比为5︰3︰2,若用分层随机抽样方法抽取容量为100的样本,则应从C中抽取_____个个体.
(3)分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为____.
20 
6 
【对点练习】? (1)某公司生产三种型号的轿车,产量分别是1
200辆,6
000辆和2
000辆,为检验该公司的产品质量,现用分层随机抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取____辆、_____辆、_____辆.
(2)在本例(2)中,若A,B,C三层的样本的平均数分别为15,30,20,则样本的平均数为_______.
6 
30 
10 
20.5 
 某单位有老年人28人、中年人54人、青年人81人,为了调查他们的身体情况,需从中抽取一个样本量为36的样本,则下列抽样方法适合的是_____.
①简单随机抽样;
②直接运用分层随机抽样;
③先从老年人中剔除1人,再用分层随机抽样.
[错解] ③
易错警示
典例
4
忽略抽样的公平性致错
② 
[误区警示] 分层随机抽样的一个很重要的特点是每个个体被抽到的机会是相等的.当按照比例计算出的值不是整数时,一般采用四舍五入的方法取值.若四舍五入后得到的样本量与要求的不尽相同,则可根据问题的实际意义适当处理,使之相同,这只是细节性问题,并未改变分层随机抽样的本质.
【对点练习】? 为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是
(  )
A.简单随机抽样  
B.按性别分层随机抽样
C.按学段分层随机抽样  
D.随机数法抽样
[解析] 依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层随机抽样.故选C.
C 
课堂检测·固双基
素养作业·提技能