27.2.3 相似三角形的应用举例同步练习(含解析)

文档属性

名称 27.2.3 相似三角形的应用举例同步练习(含解析)
格式 doc
文件大小 1.5MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2021-02-14 23:08:20

图片预览

文档简介

中小学教育资源及组卷应用平台
第二十七章 相似27.2.3 相似三角形的应用练习
一、单选题(共10小题)
1.(2020·永定区期中)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(  )
A.五丈 B.四丈五尺 C.一丈 D.五尺
2.(2019·蚌埠市期中)如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是(  )
A.6米 B.8米 C.18米 D.24米
3.(2019·石家庄市期末)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为(  )
A.12m B.13.5m C.15m D.16.5m
4.(2020·莱州市期末)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为( )
A.11.5米 B.11.75米 C.11.8米 D.12.25米
5.(2020·南昌市期中)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为(  )
A.12.36cm B.13.6cm C.32.36cm D.7.64cm
6.(2020·赤峰市期中)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高为1.5米,那么路灯A的高度AB是( )
A.4.5米 B.6米 C.7.2米 D.8米
7.(2019·抚宁区期末)如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是( )
A.AB=24m B.MN∥AB
C.△CMN∽△CAB D.CM:MA=1:2
8.(2018·武邑县期末)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为
A.10米 B.12米 C.15米 D.22.5米
9.(2020·沧州市期末)为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于(   )
A.120 m B.67.5 m C.40 m D.30 m
10.(2019·昌平区期中)小明的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为( )
A.3.2米 B.4.8米 C.5.4米 D.5.6米
二、填空题(共5小题)
11.(2019·莘县期中)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的
位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= .
12.(2020·曲阳县期中)如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.
13.(2018·莱州市期末)如图,甲、乙两名同学分别站在C、D的位置时,乙的影子与甲的影子的末端恰好在同一点,已知甲、乙两同学相距1m,甲身高1.8m,乙身高1.5m,则甲的影子是________m.
14.(2020·渠县期末)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__________米.
15.(2019·牡丹区期末)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
三、解答题(共3小题)
16.(2020·伊川县期中)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
17.(2020·临泽县期中)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)
18.(2020·七里河区期末)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.
①计算小亮在路灯D下的影长;
②计算建筑物AD的高.
答案
一、单选题(共10小题)
1.【答案】B
【详解】
设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
故选B.
2.【答案】B
【详解】
解:由镜面反射原理知∠APB=∠CPD.
∵AB⊥BD,CD⊥BD,
∴∠ABP=∠CDP.
∵∠ABP=∠CDP,∠APB=∠CPD,
∴△ABP∽△CDP,
∴AB∶BP=CD∶DP.
∵AB=1.2米,BP=1.8米,DP=12米,,
∴CD= =8(米).
故该古城墙的高度是8米.
故选B.
3.【答案】D
【详解】
∵∠DEF=∠BCD=90°,∠D=∠D,
∴△DEF∽△DCB,
∴,
∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,
∴由勾股定理求得DE=40cm,
∴,
∴BC=15米,
∴AB=AC+BC=1.5+15=16.5(米).
故答案为16.5m.
4.【答案】C
【详解】
如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,
∵同一时刻物高与影长成正比例,
∴AE:ED=1:0.4,即AE:4.6=1:0.4,
∴AE=11.5米,
∴AB=AE+EB=11.5+0.3=11.8米,
∴树的高度是11.8米,
故选C.
5.【答案】A
【详解】
已知书的宽与长之比为黄金比,书的长为20cm,根据黄金分割的比值约为0.618可得书的宽约为20×0.618=12.36cm.故答案选A.
6.【答案】B
【详解】
由题意知:MC∥AB,∴△DCM∽△DAB,
∴=,即=,
∵NE∥AB,∴△FNE∽△FAB,
∴=,即=,
∴=,解得:BC=3,
∴=,解得:AB=6,
即路灯A的高度AB为6米,
故选B.
7.【答案】D
【详解】
∵M、N分别是AC,BC的中点
∴MN∥AB,MN=AB,
∴AB=2MN=2×12=24m
△CMN∽△CAB
∵M是AC的中点
∴CM=MA
∴CM:MA=1:1
故描述错误的是D选项.
故选D.
8.【答案】A
【解析】
试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.因此,
∵,即,∴楼高=10米.故选A.
9.【答案】A
【解析】
∵∠ABE=∠DCE, ∠AEB=∠CED,
∴△ABE∽△DCE,
∴.
∵BE=90m,EC=45m,CD=60m,

故选A.
10.【答案】C
【详解】
据相同时刻的物高与影长成比例,
设这棵树的高度为xm,
则可列比例为:,
解得,x=5.4.
故选C.
二、填空题(共5小题)
11.【答案】5.5
【详解】
试题分析:在△DEF和△DBC中,,
∴△DEF∽△DBC,
∴=,
即=,
解得BC=4,
∵AC=1.5m,
∴AB=AC+BC=1.5+4=5.5m
12.【答案】3
【解析】
试题分析:如图,∵CD∥AB∥MN,
∴△ABE∽△CDE,△ABF∽△MNF,
∴,
即,
解得:AB=3m,
答:路灯的高为3m.
13.【答案】6
【详解】
解:设甲的影长是x米,
∵BC⊥AC,ED⊥AC,
∴△ADE∽△ACB,
∴,
∵CD=1m,BC=1.8m,DE=1.5m,
∴,
解得:x=6.
所以甲的影长是6米.
故答案是6.
14.【答案】54
【解析】
设建筑物的高为x米,根据题意易得△CDG∽△ABG,∴,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得,即,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.
15.【答案】57.5
【详解】
如图,AE与BC交于点F,
由BC //ED 得△ABF∽△ADE,
∴AB:AD=BF:DE,即5:AD=0.4:5,
解得:AD=62.5(尺),
则BD=AD-AB=62.5-5=57.5(尺)
故答案为57.5.
三、解答题(共3小题)
16.【答案】河宽为17米.
【详解】∵CB⊥AD,ED⊥AD,
∴∠CBA=∠EDA=90°,
∵∠CAB=∠EAD,
∴?ABC∽?ADE,
∴,
又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,
∴,
∴AB=17,
即河宽为17米.
17.【答案】路灯的高CD的长约为6.1 m.
【解析】
设路灯的高CD为xm,
∵CD⊥EC,BN⊥EC,
∴CD∥BN,
∴△ABN∽△ACD,∴,
同理,△EAM∽△ECD,
又∵EA=MA,∵EC=DC=xm,
∴,解得x=6.125≈6.1.
∴路灯的高CD约为6.1m.
18.【答案】①;②.
【详解】
①∵,,

∵,





②∵,,

∵,



∴.
_21?????????è?????(www.21cnjy.com)_