第二十七章 相似单元测试卷(含答案)

文档属性

名称 第二十七章 相似单元测试卷(含答案)
格式 doc
文件大小 1.5MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2021-02-14 23:25:25

图片预览

文档简介

中小学教育资源及组卷应用平台
第二十七章 相似
(满分:100分 时间:90分钟)
班级_________ 姓名_________ 学号_________ 分数_________
一、单选题(共10小题,每小题3分,共计30分)
1.(2018·安徽包河区期末)下列线段中,能成比例的是(  )
A.3cm、6cm、8cm、9cm B.3cm、5cm、6cm、9cm
C.3cm、6cm、7cm、9cm D.3cm、6cm、9cm、18cm
2.(2020·黑龙江肇州县·八年级期末)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为(  )
A.1 B.2 C.3 D.4
3.(2019·安徽淮北市·九年级期中)如图,在△ABC中,已知MN∥BC,DN∥MC.小红同学由此得出了以下四个结论:①=;②=;③=;④=.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
4.(2019·四川省巴中中学期末)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是(  )
A.360元 B.720元 C.1080元 D.2160元
5.(2020·乌拉特前旗第六中学九年级期中)如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为(  )
A.2:5 B.3:5 C.9:25 D.4:25
6.(2019·山东兰陵县·九年级期末)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=(  )
A.16 B.18 C.20 D.24
7.(2020·深圳市福田区石厦学校九年级期中)如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是( )
A. B. C. D.
8.(2019·安徽全椒县·九年级期中)如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是(  )
A.6米 B.8米 C.18米 D.24米
9.(2020·山东莱州市·八年级期末)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为( )
A.11.5米 B.11.75米 C.11.8米 D.12.25米
10.(2018·河南长葛市·九年级期末)如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为(  )
A.(2,2),(3,2) B.(2,4),(3,1)
C.(2,2),(3,1) D.(3,1),(2,2)
二、填空题(共5小题,每小题4分,共计20分)
11.(2019·广东茂名市·九年级期中)已知,且,则的值为__________.
12.(2019·四川省成都七中育才学校学道分校九年级期中)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为   米.
13.(2019·甘肃临泽县·临泽二中)如图,等边△ABC的边长为3,点P为BC上一点,且BP=1,点D为AC上一点,若∠APD=60°,则CD的长为________.
14.(2020·广东东莞市·九年级期末)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.
15.(2019·山西盂县·九年级期末)在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.
三、解答题(共5小题,每小题10分,共计50分)
16.(2019·湖州市第五中学九年级期中)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
17.(2020·伊川县教育局基础教育教研室九年级期中)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
18.(2020·山东东平县·八年级期末)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.
(1)求证:△ADF∽△ACG;
(2)若,求的值.

19.(2020·北京市第四十三中学九年级期中)如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
20.(2020·青神县实验初级中学校九年级期中)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
答案
(满分:100分 时间:90分钟)
班级_________ 姓名_________ 学号_________ 分数_________
一、单选题(共10小题,每小题3分,共计30分)
1.D
2.B
3.C
【解析】
①∵MN ∥ BC,∴ AN:CN = AM:BM ,该项错误;②∵DN ∥ MC,∴ AD:DM = AN:NC ,再由(1)得 AD:DM = AM:BM,该项正确;③根据(1)知,此项正确;④根据(2)知,此项正确.所以正确的有3个,故选C.
4.C
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
5.C
【详解】
∵四边形ABCD为平行四边形,
∴CD∥AB,
∴△DEF∽△BAF.
∵DE:EC=3:2,
∴,
∴.
故选C.
6.B
【详解】∵EF∥BC,
∴△AEF∽△ABC,
∵AB=3AE,
∴AE:AB=1:3,
∴S△AEF:S△ABC=1:9,
设S△AEF=x,
∵S四边形BCFE=16,
∴,
解得:x=2,
∴S△ABC=18,
故选B.
7.C
【详解】
∵△ABC为等边三角形,
∴∠B=∠C=60°,
又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∵AB=BC=3,BP=1,
∴PC=2,
∴,
∴CD=,
故选C.
8.B
【详解】
解:由镜面反射原理知∠APB=∠CPD.
∵AB⊥BD,CD⊥BD,
∴∠ABP=∠CDP.
∵∠ABP=∠CDP,∠APB=∠CPD,
∴△ABP∽△CDP,
∴AB∶BP=CD∶DP.
∵AB=1.2米,BP=1.8米,DP=12米,,
∴CD= =8(米).
故该古城墙的高度是8米.
故选B.
9.C
【详解】
如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,
∵同一时刻物高与影长成正比例,
∴AE:ED=1:0.4,即AE:4.6=1:0.4,
∴AE=11.5米,
∴AB=AE+EB=11.5+0.3=11.8米,
∴树的高度是11.8米,
故选C.
10.C
【详解】
解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点的坐标为:(2,2),(3,1).
故选C.
二、填空题(共5小题,每小题4分,共计20分)
11.【答案】12
详解:∵,
∴设a=6x,b=5x,c=4x,
∵a+b-2c=6,
∴6x+5x-8x=6,
解得:x=2,
故a=12.
故答案为12.
12.【答案】5.
【解析】
根据题意,易得△MBA∽△MCO,
根据相似三角形的性质可知,即,解得AM=5.
∴小明的影长为5米.
13.【答案】.
【详解】
∵△ABC为等边三角形,
∴∠B=∠C=60°,
又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∵AB=BC=3,BP=1,
∴PC=2,
∴,
∴CD=.
答案为.
14.【答案】9
【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
∵点D、E分别是边AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,且DE=BC,
∴△ADE∽△ABC,
则=,即,
解得:x=9,
即四边形BCED的面积为9,
故答案为9.
15.【答案】或
【详解】
解:以点为位似中心,相似比为,把缩小,点的坐标是
则点的对应点的坐标为或,即或,
故答案为:或.
三、解答题(共5小题,每小题10分,共计50分)
16.【答案】(1)见解析;(2)4.9
试题解析:(1)∵四边形ABCD是正方形,
∴AB=AD,∠B=90°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=90°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)∵∠B=90°,AB=12,BM=5,
∴AM==13,AD=12,
∵F是AM的中点,
∴AF=AM=6.5,
∵△ABM∽△EFA,
∴,
即,
∴AE=16.9,
∴DE=AE-AD=4.9.
17.【答案】河宽为17米.
【详解】∵CB⊥AD,ED⊥AD,
∴∠CBA=∠EDA=90°,
∵∠CAB=∠EAD,
∴?ABC∽?ADE,
∴,
又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,
∴,
∴AB=17,
即河宽为17米.
18.【答案】(1)证明见解析;(2)1.
【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,
∵,∴△ADF∽△ACG.
(2)解:∵△ADF∽△ACG,∴,
又∵,∴,
∴1.
19.【答案】(1)详见解析;(2)BE=.
【详解】
(1)∵AD∥BC,AB⊥BC,
∴AB⊥AD,∠A=∠B=90°,
∴∠ADE+∠AED=90°,
∵∠DEC=90°,
∴∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∴△ADE∽△BEC;
(2)∵△ADE∽△BEC,
∴,
∵AD=1,BC=3,AE=2,
∴,
∴BE=,
∴AB=AE+BE=.
20.【答案】(1)作图见解析;(2)作图见解析;A2坐标(﹣2,﹣2).

_21?????????è?????(www.21cnjy.com)_