2020——2021学年鲁教版(五四制)数学九年级下册《5.7 切线长定理》 同步练习(word版含解析)

文档属性

名称 2020——2021学年鲁教版(五四制)数学九年级下册《5.7 切线长定理》 同步练习(word版含解析)
格式 doc
文件大小 240.5KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2021-02-16 23:09:59

图片预览

文档简介

5.7 切线长定理
一.选择题
1.如图,PA,PB分别切⊙O与点A,B,MN切⊙O于点C,分别交PA,PB于点M,N,若PA=7.5cm,则△PMN的周长是(  )
A.7.5cm B.10cm C.12.5cm D.15cm
2.如图,⊙O内切于正方形ABCD,O为圆心,作∠MON=90°,其两边分别交BC,CD于点N,M,若CM+CN=4,则⊙O的面积为(  )
A.π B.2π C.4π D.0.5π
3.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为(  )
A.44 B.42 C.46 D.47
4.如图,AB、AC、BD是⊙O的切线,切点分别是P、C、D.若AB=5,AC=3,则BD的长是(  )
A.4 B.3 C.2 D.1
5.如图,一个菱形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿此菱形的四边做无滑动旋转,直至回到原出发位置时,这个圆共转了(  )
A.6圈 B.5圈 C.4.5圈 D.4圈
6.如图,⊙O是四边形ABCD的内切圆,下列结论一定正确的有(  )个:
①AF=BG;②CG=CH;③AB+CD=AD+BC;④BG<CG.
A.1 B.2 C.3 D.4
二.填空题
7.如图,从点P引⊙O的切线PA,PB,切点分别为A,B,DE切⊙O于C,交PA,PB于D,E.若△PDE的周长为20cm,则PA=   cm.
8.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=108°,则∠COD的度数是   .
9.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为   .
10.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AD边于点E,若△CDE的周长为12,则直角梯形ABCE周长为   .
11.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=   °.
12.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为   .
13.已知:PA切⊙O于点A,PB切⊙O于点B,点C是⊙O上异于A、B的一点,过点C作⊙O的切线分别交PA和PB于点D、E,若PA=10cm,DE=7cm,则△PDE的周长为   cm.
14.如图所示,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD的周长为   .
15.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,
已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为   .
16.如果圆的外切四边形的一组对边的和是5cm,那么这个四边形的周长是   cm.
三.解答题
17.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数.
18.如图,AB为⊙O直径,PA、PC分别与⊙O相切于点A、C,PQ⊥PA,PQ交OC的延长线于点Q.
(1)求证:OQ=PQ;
(2)连BC并延长交PQ于点D,PA=AB,且CQ=6,求BD的长.
19.如图,∠APB=52°,PA、PB、DE都为⊙O的切线,切点分别为A、B、F,且PA=6.
(1)求△PDE的周长;
(2)求∠DOE的度数.
20.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
21.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.
(1)若PA=6,求△PCD的周长.
(2)若∠P=50°求∠DOC.
22.如图,PA、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,交PA、PB于点E、F,已知PA=12cm,∠P=40°
①求△PEF的周长;
②求∠EOF的度数.
23.如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.
24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.
25.已知:如图△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,过D作⊙O的切线交BC于点E,EF⊥AB,垂足为F.
(1)求证:DE=BC;
(2)若AC=6,BC=8,求S△ACD:S△EDF的值.
参考答案
一.选择题
1.解:∵直线PA、PB、MN分别与⊙O相切于点A、B、C,
∴MA=MC,NC=NB,
∴△PMN的周长=PM+PN+MC+NC=PM+MA+PN+NB=PA+PB=7.5+7.5=15(cm).
故选:D.
2.解:设⊙O与正方形ABCD的边CD切于E,与BC切于F,
连接OE,OF,
则四边形OECF是正方形,
∴CF=CE=OE=OF,∠OEM=∠OFN=∠EOF=90°,
∵∠MON=90°,
∴∠EOM=∠FON,
∴△OEM≌△OFN(ASA),
∴EM=NF,
∴CM+CN=CE+CF=4,
∴OE=2,
∴⊙O的面积为4π,
故选:C.
3.解:∵四边形ABCD是⊙O的外切四边形,
∴AD+BC=AB+CD=22,
∴四边形ABCD的周长=AD+BC+AB+CD=44,
故选:A.
4.解:∵AC、AP为⊙O的切线,
∴AC=AP=3,
∵BP、BD为⊙O的切线,
∴BP=BD,
∴BD=PB=AB﹣AP=5﹣3=2.
故选:C.
5.解:∵菱形的边长与它的一边相外切的圆的周长相等
∴圆在菱形的边上转了4圈
∵圆在菱形的四个顶点处共转了360°,
∴圆在菱形的四个顶点处共转1圈
∴回到原出发位置时,这个圆共转了5圈.
故选:B.
6.解:∵⊙O是四边形ABCD的内切圆,
∴AF=AE,BF=BG,CG=CH,DH=DE,
∴AB+CD=AF+BF+CH+DH=AE+BG+CG+DE=AD+BC.
①AF=BG;④BG<CG无法判断.
正确的有②③
故选:B.
二.填空题
7.解:∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=20;
∴PA=PB=10,
故答案为10.
8.解:如图所示:连接圆心与各切点,
在Rt△DEO和Rt△DFO中,
∴Rt△DEO≌Rt△DFO(HL),
∴∠1=∠2,
同理可得:Rt△AFO≌Rt△AMO,Rt△BMO≌Rt△BNO,Rt△CEO≌Rt△CNO,
∴∠3=∠4,∠5=∠7,∠6=∠8,
∴∠5+∠6=∠7+∠8=108°,
∴2∠2+2∠3=360°﹣2×108°,
∴∠2+∠3=∠DOC=72°.
故答案为:72°.
9.解:设AB和BC上的切点分别为E、F,连接OA、OE、OB、OF,则OE⊥AB,OF⊥BC,
∵⊙O内切于菱形ABCD,
∴OE=OF,
∴OB平分∠ABC,
∵∠ABC=60°,
∴∠ABO=30°,
同理得∠BAO=60°,
∴∠AOB=90°,
∴AO=AB=2,OB=2,
∴S△AOB=AB?OE=AO?OB,
4OE=2×,
OE=,
故答案为:.
10.解:设AE的长为x,正方形ABCD的边长为a,
∵CE与半圆O相切于点F,
∴AE=EF,BC=CF,
∵EF+FC+CD+ED=12,
∴AE+ED+CD+BC=12,
∵AD=CD=BC=AB,
∴正方形ABCD的边长为4;
在Rt△CDE中,ED2+CD2=CE2,即(4﹣x)2+42=(4+x)2,解得:x=1,
∵AE+EF+FC+BC+AB=14,
∴直角梯形ABCE周长为14.
故答案为:14.
11.解:∵PA,PB是⊙O的切线,
∴PA=PB,PA⊥OA,
∴∠PAB=∠PBA,∠OAP=90°,
∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,
∴∠P=180°﹣52°﹣52°=76°;
故答案为:76.
12.解:∵四边形ABCD是⊙O的外切四边形,
∴AD+BC=AB+CD=22,
∴四边形ABCD的周长=AD+BC+AB+CD=44,
故答案为:44.
13.解:分两种情况:
①点C在劣弧AB上时,如图,
当根据切线长定理得:AD=CD,BE=CE,PA=PB,
则△PDE的周长=PD+DE+PE=PD+CD+CE+PE=PD+AD+PE+BE=PA+PB=2PA=20cm.
②点C在优弧AB上时,如图,
当根据切线长定理得:AD=CD,BE=CE,PA=PB,
则△PDE的周长=PD+DE+PE=2PA+2DE=20+2×7=34cm.
综上,△PDE的周长为 20或34cm.
故答案为:20或34.
14.解:∵PA、PB切⊙O于A、B,
∴PA=PB=15;
同理,可得:EC=CA,DE=DB;
∴△PDC的周长=PC+CE+DE+DP=PC+AC+PD+DB=PA+PB=2PA=30.
即△PCD的周长是:30.
故答案为:30.
15.解:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,
∴设E、F分别是⊙O的切点,
故DM=MF,FN=EN,AD=AE,
∴AM+AN+MN=AD+AE=10+10=20(cm).
故答案是:20cm.
16.解:∵四边形ABCD是圆的切线.
∴AH=AE,BE=BF,CF=CG,DH=DG
∴AH+DH+BF+CF=AE+BE+CG+DG
即:AD+BC=AB+CD
∴四边形的周长是10cm.
故答案是:10.
三.解答题
17.解:根据切线的性质得:∠PAC=90°,
所以∠PAB=90°﹣∠BAC=90°﹣20°=70°,
根据切线长定理得PA=PB,
所以∠PAB=∠PBA=70°,
所以∠P=180°﹣70°×2=40°.
18.(1)证明:连接OP.
∵PA、PC分别与⊙O相切于点A,C,
∴PA=PC,OA⊥PA,
∵OA=OC,OP=OP,
∴△OPA≌△OPC(SSS),
∴∠AOP=∠POC,
∵QP⊥PA,
∴QP∥BA,
∴∠QPO=∠AOP,
∴∠QOP=∠QPO,
∴OQ=PQ.
(2)设OA=r.
∵OB=OC,
∴∠OBC=∠OCB,
∵OB∥QD,
∴∠QDC=∠B,
∵∠OCB=∠QCD,
∴∠QCD=∠QDC,
∴QC=QD=6,∵QO=QP,
∴OC=DP=r,
∵PC是⊙O的切线,
∴OC⊥PC,
∴∠OCP=∠PCQ=90°,
在Rt△PCQ中,∵PQ2=PC2+QC2,
∴(6+r)2=62+(2r)2,
r=4或0(舍弃),
∴OP==4,
∵OB=PD,OB∥PD,
∴四边形OBDP是平行四边形,
∴BD=OP=4.
19.解:(1)∵PA、PB、DE都为⊙O的切线,
∴DA=DF,EB=EF,PA=PB=6,
∴DE=DA+EB,
∴PE+PD+DE=PA+PB=12,
即△PDE的周长为12;
(2)连接OF,
∵PA、PB、DE分别切⊙O于A、B、F三点,
∴OB⊥PB,OA⊥PA,∠BOE=∠FOE=∠BOF,∠FOD=∠AOD=∠AOF,
∵∠APB=52°,
∴∠AOB=360°﹣90°﹣90°﹣52°=128°,
∴∠DOE=∠FOE+∠FOD=(∠BOF+∠AOF)=∠BOA=64°.
20.解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴∠OBE+∠OCF=90°,
∴∠BOC=90°;
(2)由(1)知,∠BOC=90°.
∵OB=6cm,OC=8cm,
∴由勾股定理得到:BC==10cm,
∴BE+CG=BC=10cm.
(3)∵OF⊥BC,
∴OF==4.8cm.
21.解:(1)连接OE,
∵PA、PB与圆O相切,
∴PA=PB=6,
同理可得:AC=CE,BD=DE,
△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;
(2)∵PA PB与圆O相切,
∴∠OAP=∠OBP=90°∠P=50°,
∴∠AOB=360°﹣90°﹣90°﹣50°=130°,
在Rt△AOC和Rt△EOC中,

∴Rt△AOC≌Rt△EOC(HL),
∴∠AOC=∠COE,
同理:∠DOE=∠BOD,
∴∠COD=∠AOB=65°.
22.解:①∵PA、PB是⊙O的切线,
∴PA=PB,
又∵直线EF是⊙O的切线,
∴EB=EQ,FQ=FA,
∴△PEF的周长=PE+PF+EF=PE+PF+EB+FA=PA+PB=2PA=24cm;
②连接OE,OF,则OE平分∠BEF,OF平分∠AFE,
则∠OEF+∠OFE=(∠P+∠PFE)+∠(P+∠PEF)=(180°+40°)=110°,
∴∠EOF=180°﹣110°=70°.
23.解:∵PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,
∴PA+PB=m,PA?PB=m﹣1,
∵PA、PB切⊙O于A、B两点,
∴PA=PB=,
即?=m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,
∴AD=ED,BC=EC,
∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
24.解:∵PA、PB是⊙O的切线,切点分别是A、B,
∴PA=PB=12,
∵过Q点作⊙O的切线,交PA、PB于E、F点,
∴EB=EQ,FQ=FA,
∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,
=PE+EB+PF+FA=PB+PA=12+12=24,
答:△PEF的周长是24.
25.(1)证明:∵EC、ED都是⊙O的切线,
∴EC=ED,∠ECD=∠EDC.
∵∠EDC+∠EDB=90°,∠ECD+∠B=90°,
∴∠EDB=∠B.
∴ED=BE.
∴DE=BE=EC.
∴DE=BC.
(2)解:在Rt△ABC中,AC=6,BC=8,则AB=10,
根据射影定理可得:
AD=AC2÷AB=3.6,
BD=BC2÷AB=6.4,
∴S△ACD:S△BCD=AD:BD=9:16,
∵ED=EB,EF⊥BD,
∴S△EDF=S△EBD,
同理可得S△EBD=S△BCD,
∴S△EDF=S△BCD,
∴S△ACD:S△EDF=.