(试题3)2.1~2.2水平测试

文档属性

名称 (试题3)2.1~2.2水平测试
格式 zip
文件大小 79.5KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2011-12-19 21:09:09

图片预览

文档简介

2.1~2.2水平测试
一、选择题
1.等差数列中,,则的值为(  )
A.20 B.22 C.24 D.28
2.在等差数列中,,,则等于(  )
A.68 B.189 C.78 D.129
3.在等差数列中,为公差,,则等于(  )
A. B.2 C. D.4
4.若等差数列的公差,且,又,则等于(  )
A. B.
C. D.
5.在等差数列中,,,则此数列前20项之和等于(  )
A.160 B.180 C.200 D.220
6.设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(  )
A.1 B.2 C.4 D.6
二、填空题
7.等差数列中,,,,则    .
8.已知数列满足且则数列的通项公式为     .
9.已知定义在上的函数满足,,则     .
10.一种软件的租金,第一天6元,第二天12元,以后每天比前一天多3元,那么第天的租金(单位:元)     .
三、解答题
11.已知等差数列,首项,且,问此数列前几项的和最大?最大值是多少?
12.等差数列的项数是奇数,且,,求的值.
13.某地抗洪抢险过程中接到预报,24小时后有一个超历史最高水平的洪峰到达,为保证万无一失,抗洪指挥部决定在24小时内筑起一道堤作为第二道防线,经计算,如果有25辆大型翻斗车同时作业20小时可筑起第二道防线,但是除现有一辆车可立即投入作业外,其余车辆要从各处紧急抽调,每隔20分钟就有一辆车到达并投入工作,问指挥部还要组织多少辆这样的翻斗车工作,才能保证24小时内完成第二道防线?请说明理由.
14.数列是首项为23,公差为整数的等差数列,且第6项为正,第7项为负.
(1)求数列的公差;
(2)求前项和的最大值;
(3)当时,求的最大值.
参考答案
一、
1.C
2.A
3.C
4.C
5.B
6.B
二、填空题
7.
8.
9. 497
10.
三、解答题
11.解:设此等差数列公差为,前项和为,
则由,得,
即.
由题意得.

当或时,为最大.
12.解:由已知可得
①②得,
①②得.
所以,即.
13.解:设从现有一辆车投入工作算起,各车的工作时间依次组成数列,则由题意知,所以为等差数列.
若指挥部至少还需组织辆车,则,
所以,即,
解得,最小值为25.
所以指挥部至少还需组织24辆车陆续工作,才能保证24小时内完成第二道防线.
14.解:(1)由已知,,
故,
又,;
(2),是递减数列.
又,,当时,取得最大值,;
(3),
整理,得.

又,所求的最大值为12.