1.3线段的垂直平分线
同步测试
一.选择题
1.如图,∠B=35°,CD为AB的垂直平分线,则∠ACE=( )
A.55°
B.60°
C.70°
D.80°
2.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC=2,则BC的长为( )
A.4
B.6
C.8
D.10
3.如图,在△ABC中,AD⊥BC,垂足为D,EF垂直平分AC,交AC于点F,交BC于点E,BD=DE,若△ABC的周长为26cm,AF=5cm,则DC的长为( )
A.8cm
B.7cm
C.10cm
D.9cm
4.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是( )
A.13
B.15
C.18
D.21
5.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABD的周长为13,BE=5,则△ABC的周长为( )
A.14
B.18
C.23
D.28
6.如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=12°,则∠EFB的度数为( )
A.58°
B.63°
C.67°
D.70°
7.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC=4,AC=8,则S△PBC为( )
A.3
B.3.3
C.4
D.4.5
8.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )
A.8
B.11
C.16
D.17
9.如图,在△ABC中,AB=AC,AB的中垂线交AB于点D,交BC的延长线于点E,交AC于点F,若AB+BC=6,则△BCF的周长为( )
A.4.5
B.5
C.5.5
D.6
10.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为( )
A.15°
B.20°
C.25°
D.30°
二.填空题
11.到线段两端距离相等的点在线段的
上.
12.如图,在△ABC中,DE是AC的垂直平分线,△BCD的周长为13,△ABC的周长是19,若∠ACD=60°,则AD=
.
13.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是
.
14.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB=
.
15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠FAC=65°,则∠B的度数为
.
三.解答题
16.如图,AD是△ABC的高,AD垂直平分线分别交AB,AC于点E,F.
(1)求证:∠B=∠AED.
(2)若DE=1,求AB的长.
17.如图,△ABC中,DE是AC的垂直平分线,△ABC的周长为21cm,△ABD的周长为13cm,求AE的长.
18.如图,△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.
(1)求∠PAQ的度数.
(2)若△APQ周长为12,BC长为8,求PQ的长.
参考答案
一.选择题
1.解:∵CD为AB的垂直平分线,
∴AC=BC,
∴∠B=∠A=35°
∴∠ACE=∠B+∠A=70°.
故选:C.
2.解:∵DE是线段AB的垂直平分线,
∴DA=DB,
∵△ADC的周长为10,
∴AC+DC+AD=10,
∴AC+CD+BD=AC+BC=10,
∵BC﹣AC=2,
∴BC=6,
故选:B.
3.解:∵AD⊥BC,BD=DE,EF垂直平分AC,
∴AB=AE=EC,
∵△ABC周长26cm,AF=5cm,
∴AC=10(cm),
∴AB+BC=16(cm),
∴AB+BE+EC=16(cm),
即2DE+2EC=16(cm),
∴DE+EC=8(cm),
∴DC=DE+EC=8(cm),
故选:A.
4.解:
连接OC,
∵点O是边BC,AC的垂直平分线的交点,
∴OB=OC,OA=OC,
∴OA=OB,
∵OB=5,
∴OA=OB=5,
∵AB=8,
∴△AOB的周长是AB+OA+OB=8+5+5=18,
故选:C.
5.解:∵BC的垂直平分线分别交AC,BC于点D,E,
∴DB=DC,BE=EC,
∵BE=5,
∴BC=10,
∵△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=13,
∴△ABC的周长为AB+AC+BC=13+10=23,
故选:C.
6.解:∵DE垂直平分BC,
∴EB=EC,
∴∠EBC=∠ECB,
∵EB=EC,BE=AC,
∴AC=EC,
∴∠AEC=∠EAC=×(180°﹣12°)=84°,
∴∠EBC=∠ECB=∠AEC=42°,
∵BF平分∠ABC,
∴∠EBF=∠CBF=21°,
∴∠EFB=∠AEC﹣∠EBF=63°,
故选:B.
7.解:∵点D在线段AB的垂直平分线上,
∴DA=DB,
在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,
解得,BD=5,
∴CD=8﹣5=3,
∴△BCD的面积=×CD×BC=×3×4=6,
∵P是BD的中点,
∴S△PBC=S△BCD=3,
故选:A.
8.解:∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长=AC+CE+AE
=AC+CE+BE
=AC+BC
=5+6
=11.
故选:B.
9.解:∵DF为AB的垂直平分线,
∴AF=BF,
∴△BCF的周长=CF+BF+BC=CF+AF+BC=AC+BC,
∵AB=AC,AB+BC=6,
∴AC+BC=6,
∴△BCF的周长为6.
故选:D.
10.解:∵AB边的垂直平分线交AB于点D,AC边的垂直平分线交AC于点F,
∴AG=CG,AE=BE,
∴∠C=∠CAG,∠B=∠BAE,
∴∠BAE+∠CAG=∠B+∠C=180°﹣∠BAC=100°,
∴∠EAG=∠BAE+∠CAG﹣∠BAC=100°﹣80°=20°,
故选:B.
二.填空题
11.解:到线段两端距离相等的点在线段的垂直平分线上,
故答案为:垂直平分线.
12.解:∵DE是AC的垂直平分线,
∴DA=DC,
∵∠ACD=60°,
∴△ADC为等边三角形,
∴AD=AC,
∵△ABC的周长是19,
∴AB+BC+AC=19,
∵△BCD的周长为13,
∴BD+DC+BC=BD+DA+BC=AB+BC=13,
∴AC=19﹣13=6,
∴AD=AC=6,
故答案为:6.
13.解:∵DE是AB的垂直平分线,
∴EA=EB,
∴△ACE的周长=AC+CE+EA=AC+CE+EB=AC+CB=11,
故答案为:11.
14.解:∵EF垂直平分AB于点F,
∴AE=BE,
∵BE+CE=20cm,
∴AE+CE=20cm,
即AC=20cm,
∵AD垂直平分BC于点D,
∴AB=AC=20cm,
故答案为:20cm.
15.解:∵AD平分∠CAB,
∴∠CAD=∠BAD,
设∠CAD=∠BAD=x°,
∵EF垂直平分AD,
∴FA=FD,
∴∠FDA=∠FAD,
∵∠FAC=65°,
∴∠FAD=∠FAC+∠CAD=65°+x°,
∵∠FDA=∠B+∠BAD=∠B+x°,
∴65°+x°=∠B+x°,
∴∠B=65°,
故答案为:65°.
三.解答题
16.(1)证明:∵EF是AD的垂直平分线,
∴EA=ED,
∵EH⊥AD,
∴∠AEH=∠DEH,
∵EF⊥AD,BC⊥AD,
∴EF∥BC,
∴∠AEH=∠B,
∴∠B=∠AED;
(2)解:由(1)得:EF∥BC,
∴∠HED=∠EDB,
∵∠AEH=∠HED,∠AEH=∠B,
∴∠B=∠EDB,
∴BE=DE,
∴AB=2BE=2DE=2×1=2.
17.解:∵DE是AC的垂直平分线,
∴AD=DC,AE=CE=AC,
∵△ABC的周长为21cm,
∴AB+BC+AC=21cm,
∵△ABD的周长为13cm,
∴AB+BD+AD=AB+BD+DC=AB+BC=13cm,
∴AC=8cm,
∴AE=4cm.
18.解:(1)设∠PAQ=x,∠CAP=y,∠BAQ=z,
∵MP和NQ分别垂直平分AB和AC,
∴AP=PB,AQ=CQ,
∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y,
∵∠BAC=80°,
∴∠B+∠C=100°,
即x+y+z=80°,x+z+x+y=100°,
∴x=20°,
∴∠PAQ=20°;
(2)∵△APQ周长为12,
∴AQ+PQ+AP=12,
∵AQ=CQ,AP=PB,
∴CQ+PQ+PB=12,
即CQ+BQ+2PQ=12,
BC+2PQ=12,
∵BC=8,
∴PQ=2.