17.4 一元二次方程根与系数的关系 课件(共21张PPT)

文档属性

名称 17.4 一元二次方程根与系数的关系 课件(共21张PPT)
格式 pptx
文件大小 1.6MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2021-02-27 13:53:52

图片预览

文档简介

17.4 一元二次方程根与系数的关系
第17章 一元二次方程
2020-2021学年度沪科版八年级下册
1.探索一元二次方程的根与系数的关系.(难点)
2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点)
学习目标
1.一元二次方程的求根公式是什么?
想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?
2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0)
b2 - 4ac > 0 时,方程有两个不相等的实数根.
b2 - 4ac = 0 时,方程有两个相等的实数根.
b2 - 4ac < 0 时,方程无实数根.
复习导入
2.求根公式是什么?根的个数怎么确定的?
1.一元二次方程的解法有哪些,步骤呢?
探索一元二次方程的根与系数的关系
算一算 解下列方程并完成填空:
(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.
{5C22544A-7EE6-4342-B048-85BDC9FD1C3A}一元二次方程
两 根
关 系
x1
x2
x2+3x-4=0
x2-5x+6=0
2x2+3x+1=0
-4
1
2
3
-1
x1+x2=-3
x1 · x2=-4
x1+x2=5
x1 · x2=6
探究新知
猜一猜
(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?
重要发现
如果方程x2+px+q=0的两根是x1,x2,那么x1+x2= -p , x1 ·x2=q.
(x-x1)(x-x2)=0.
x2-(x1+x2)x+x1·x2=0,
x2+px+q=0,
x1+x2= -p , x1 ·x2=q.
猜一猜
(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?
证一证:
一元二次方程的根与系数的关系 (韦达定理)
如果 ax2+bx+c=0(a≠0)的两个根为x1、 x2,那么
注意
满足上述关系的前提条件
b2-4ac≥0.
归纳总结
一元二次方程的根与系数的关系的应用
例1:利用根与系数的关系,求下列方程的两根之和、两根之积.
(1)x2 + 7x + 6 = 0;
解:这里 a = 1 , b = 7 , c = 6.
= b2 - 4ac = 72 – 4 × 1 × 6 = 25 > 0.
∴方程有两个实数根.
设方程的两个实数根是 x1, x2, 那么
x1 + x2 = -7 , x1 x2 = 6.
探究新知
(2)2x2 -3x -2 = 0.
解:这里 a = 2 , b = -3 , c = -2.
= b2 -4ac = (-3)2 – 4 × 2 × (-2) = 25 > 0,
∴方程有两个实数根.
设方程的两个实数根是 x1, x2, 那么
x1 + x2 = , x1 x2 = -1 .
例2 已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.
解:设方程的两个根分别是x1、x2,其中x1=2 .
∴x1 · x2=2x2=
即 x2=
由于x1+x2=2+ =
得:k=-7.
答:方程的另一个根是 ,k的值为-7.
变式:已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.
解:设方程的两个根分别是x1、x2,其中x1=1.
∴x1 + x2=1+x2=6,
即:x2=5 .
由于x1·x2=1×5=
得:m=15.
答:方程的另一个根是5,m的值为15.
例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.
解:根据根与系数的关系可知:
设x1, x2为方程x2-4x+1=0的两个根,则:
(1)x1+x2= , (2)x1·x2= ,
(3) ,
(4) .
4
1
14
12
练一练
例4:设x1,x2是方程 x2 -2(k - 1)x + k2 =0 的两个实数根,且x12 +x22 =4,求k的值.
解:由方程有两个实数根,得Δ= 4(k -1)2 -4k2 ≥ 0
即 -8k + 4 ≥ 0,
由根与系数的关系得 x1 + x2 = 2(k -1) , x1 x2 =k 2.
∴ x12 + x22 = (x1 + x2)2 - 2x1x2
= 4(k -1)2 -2k2 = 2k2 -8k + 4.
由 x12 + x22 = 4,得 2k2 - 8k + 4 = 4,
解得 k1= 0 , k2 = 4 .
经检验, k2 = 4 不合题意,舍去.∴k=0.
总结常见的求值:
求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.
归纳
根与系数的关系
(韦达定理)
内 容
如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么
应 用
课堂小结
谢谢聆听